K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

\(\frac{a^4+b^4}{\left(ab\right)^2}=\frac{b^2}{a^2}+\frac{a^2}{b^2}\)

Ta có : \(\left(\frac{a}{b}-\frac{b}{a}\right)^2\ge0\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge2\)

Vậy suy ra đpcm

24 tháng 1 2018

Có : (a-b)^2 >= 0 

<=> a^2-2ab+b^2 >= 0

<=> a^2-2ab+b^2+2ab >= 0 + 2ab

<=> a^2+b^2 >= 2ab

Áp dụng bđt trên thì A >= \(2\sqrt{a.1}+2\sqrt{b.1}\) = \(2\sqrt{a}+2\sqrt{b}\)>=  \(2\sqrt{2\sqrt{a}.2\sqrt{b}}\)

\(2\sqrt{4.\sqrt{ab}}\)=  \(2\sqrt{4.1}\)=  4

=> ĐPCM

Dấu "=" xảy ra <=> a=b=1

Tk mk nha

7 tháng 4 2019

\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow D< 1-\frac{1}{2017}< 1\)

Vậy C > D

10 tháng 4 2019

Í em mới lớp 7 thôi hả

Vậy mà giỏi đến mức được làm công tác viên òi

Tức là chị là chị của công tác viên hí hí 
~ lớp 8 ~

10 tháng 4 2019

Lớp 7 nhưng chịu quá nhiều tai tiếng ạ,vs như lúc đó ko thuộc hằng đẳng thức bình phương của một tổng,làm xàm thế là...

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

28 tháng 5 2019

:v~ cả lớp 7 

28 tháng 5 2019

Quá dài dòng ~.~

Có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^4}{a^3b}+\frac{b^4}{b^3c}+\frac{c^4}{c^3a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3b+b^3c+c^3a}=\frac{9\left(a^2+b^2+c^2\right)^2}{9\left(a^3b+b^3c+c^3a\right)}\)

Cần CM Bđt:

\(\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)\ge9\left(a^3b+b^3c+c^3a\right)\)

hay: \(\left(a^2+b^2+c^2\right)^2+2\left(ab+bc+ac\right)\left(a^2+b^2+c^2\right)\ge9\left(a^3b+b^3c+c^3a\right)\)

Sử dụng Bđt phụ: \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^3b+b^3c+c^3a\right)\)

Thu gọn bất đẳng thức cần CM còn: \(\left(ab+bc+ac\right)\left(a^2+b^2+c^2\right)\ge3\left(a^3b+b^3c+c^3a\right)\)

Cm tương đương là xong.

Như vậy: \(VT\ge\frac{9\left(a^2+b^2+c^2\right)^2}{9\left(a^3b+b^3c+c^3a\right)}\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)}=VP\)

End./.

25 tháng 10 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

Lại có : ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

4 tháng 11 2018

a) Theo bđt cauchy ta có:

\(a^3+b^3+b^3\ge3\sqrt[3]{a^3.b^6}=3ab^2\)

\(a^3+a^3+b^3\ge3a^2b\)

công vế theo vế ta có \(3\left(a^3+b^3\right)\ge3ab^2+3a^2b\)

\(\Leftrightarrow a^3+b^3+3\left(a^3+b^3\right)\ge a^3+3a^2b+3ab^2+b^3\)

\(\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

suy ra đpcm

4 tháng 11 2018

ta luôn có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\dfrac{2\left(a^2+b^2\right)}{4}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow\dfrac{\left(a^2+b^2\right)}{2}\ge\dfrac{\left(a+b\right)^2}{2^2}=\left(\dfrac{a+b}{2}\right)^2\)

suy ra đpcm