K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

\(P=2a^3+2b^3+6ab-2024\)

\(=2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+6ab-2024\)

\(=2\left[1-3ab\left(a+b\right)\right]+6ab-2024\)

\(=2-6ab+6ab-2024\)

=-2022

15 tháng 10 2023

cái khúc dấu bằng thứ 2 và thứ 3, sao biến đổi mấy số trong ngoặc thành -6ab ạ

22 tháng 7 2020

P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)

P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)

22 tháng 7 2020

\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)

22 tháng 8 2020

Biến đổi giả thiết \(2\left(a^2+b^2\right)-\left(a+b\right)=2ab\)

Mà ta có: \(2ab\le\frac{\left(a+b\right)^2}{2}\)nên \(2\left(a^2+b^2\right)-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)(*)

Theo BĐT Cauchy-Schwarz: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)nên từ (*) suy ra \(\left(a+b\right)^2-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)

Đặt \(s=a+b>0\)thì \(s^2-s\le\frac{s^2}{2}\Leftrightarrow\frac{s^2}{2}-s\le0\Leftrightarrow s^2-2s\le0\Leftrightarrow s\left(s-2\right)\le0\)

Mà \(s>0\)nên \(s-2\le0\Rightarrow s\le2\)hay \(a+b\le2\)

\(F=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{a^4}{ab}+\frac{b^4}{ab}+2020.\frac{4}{a+b}\)\(\ge\frac{\left(a^2+b^2\right)^2}{2ab}+\frac{8080}{a+b}\ge\left(\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}\right)+\frac{8072}{a+b}\)

\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{2}.\frac{4}{a+b}.\frac{4}{a+b}}+\frac{8072}{2}=4042\)

Đẳng thức xảy ra khi a = b = 1

9 tháng 8 2018

Chào thanh niên lâu lắm mới on à

22 tháng 12 2017

Ta có :\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+b^2+2ab\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

Suy ra \(\frac{2011}{2a^2+2b^2+2008}\le\frac{2011}{\left(a+b\right)^2+2008}=\frac{2011}{4+2008}=\frac{2011}{2012}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)