Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)
b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)
Theo de bai ta co;\(x_1-x_2=17\)
Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)
\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow16m^2+33=289\)
\(\Leftrightarrow m=4\)
2.
a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)
TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)
TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)
Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)
Ta co:\(x^2_1+x^2_2=x_1+x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)
\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)
\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)
\(\Rightarrow7m^2-11m-6=0\)
\(\Delta_m=121+168=289>0\)
\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\)
TH2;Tuong tu
Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)
Phương trình đã cho có hai nghiệm
<=>∆ ≥ 0
<=>(m+3)²-8m ≥ 0
<=>m²-2m+9 ≥ 0
<=>(m-1)²+8 ≥ 0 (đúng)
Vậy pt đa cho luôn có nghiệm vói mọi m € R
``````````````````
Theo viét ta có:
x1+x2=(m+3)/2
x1.x2=m/2
Khi đó:
x1+x2=5/(2x1.x2)
<=>(m+3)/2 = 5/m
<=>m²+3m=10
<=>m²+3m-10=0
<=>m=2 hoặc m=-5
Vậy m=2 và m=-5 là giá trị cần tìm
=============
b/ Ta có:
P=|x1-x2|
=>P² = (x1-x2)² = (x1+x2)²-4x1.x2
=(m+3)²/4-2m = (m²-2m+9)/4
=[(m-1)²+8]/4 ≥ 2
=>P ≥ √2
Vậy minP=√2 <=>m=1
Đáp án B
Nếu hai số có tổng là S và tích là P thì hai số đó là hai nghiệm của phương trình X 2 - SX + P = 0 (ĐK: S 2 ≥ 4P)