Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}>=\frac{2}{\left(1+ab\right)}\)
\(\Leftrightarrow\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}-\frac{2}{\left(1+ab\right)}>=0\)
\(\Leftrightarrow\left[\frac{1}{\left(1+a^2\right)}-\frac{1}{\left(1+ab\right)}\right]+\left[\frac{1}{\left(1+b^2\right)}-\frac{1}{\left(1+ab\right)}\right]>=0\)
\(\Leftrightarrow\left[\frac{a\left(b-c\right)}{\left(1+a^2\right)\left(1+ab\right)}\right]+\left[\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\right]>=0\)
\(\frac{\left[a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)
\(\frac{\left[\left(b-a\right)\left(a+ab^2-b+ba^2\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)
\(\frac{\left[\left(b-a\right)\left[\left(a-b\right)+ab\left(b-a\right)\right]\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)
\(\frac{\left[\left(b-a\right)^2\left(ab-1\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\left(1\right)\)
Mẫu số luôn lớn hơn 1
\(\left(b-a\right)^2>=0\) voi moi a,b
Vì a,b >=1 nên ( ab-1) > = 0
Nên (1) dụng
\(1.\sqrt{a^2+ab+b^2}\le\frac{1+a^2+ab+b^2}{2}\)
\(\Rightarrow VT\ge\frac{1}{\frac{1+a^2+ab+b^2}{2}}+\)\(\frac{1}{\frac{1+b^2+cb+c^2}{2}}+\)\(\frac{1}{\frac{1+c^2+ac+a^2}{2}}\)\(\ge\frac{\left(1+1+1\right)^2}{\frac{1+a^2+ab+b^2}{2}+\frac{1+b^2+bc+c^2}{2}+\frac{1+c^2+ca+a^2}{2}}=\frac{9}{a^2+b^2+c^2+\frac{\left(ab+bc+ca\right)+3}{2}}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=VP\)
vì 3 </ 3 ( ab+bc+ca)
Theo giả thiết, ta có: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\ge1\)\(\Leftrightarrow1-\frac{1}{a+b+1}+1-\frac{1}{b+c+1}+1-\frac{1}{c+a+1}\le2\)\(\Leftrightarrow\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\le2\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\)\(=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a+b+1\right)}+\frac{\left(b+c\right)^2}{\left(b+c\right)\left(b+c+1\right)}+\frac{\left(c+a\right)^2}{\left(c+a\right)\left(c+a+1\right)}\)\(\ge\frac{\left(a+b+b+c+c+a\right)^2}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2+2\left(a+b+c\right)}\)
Từ đó suy ra \(\frac{\left(a+b+b+c+c+a\right)^2}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2+2\left(a+b+c\right)}\le2\) \(\Leftrightarrow\left(a+b+b+c+c+a\right)^2\) \(\le2\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2+2\left(a+b+c\right)\right]\)
\(\Leftrightarrow a+b+c\ge ab+bc+ca\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Chứng minh bằng biến đổi tương đương :
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\left(\frac{a-b}{1+ab}\right)\left(\frac{b}{1+b^2}-\frac{a}{1+a^2}\right)\ge0\)
\(\Leftrightarrow\frac{a-b}{1+ab}.\frac{\left(a-b\right)\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(ab+1\right)\left(a^2+1\right)\left(b^2+1\right)}\ge0\)
Vì \(a\ge1,b\ge1\) nên \(ab-1\ge0\) . Mặt khác vì \(\left(a-b\right)^2\ge0\) nên ta có điều phải chứng minh.
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)
\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)
Cộng vế với vế ta có đpcm
Cách : AM - GM :
\(VT=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)\left(1\right)\)
Áp dụng BĐT AM - GM :
\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)
\(\le\frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^aa^4}}=\frac{2}{3}\left(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}\right)\)
\(\le\frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}\left(a+b+c\right)=2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT\ge3-2=1\left(đpcm\right)\)
Cách khác:
\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)\left[b\left(1+a^2\right)-a\left(1+b^2\right)\right]}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) (luôn đúng).
\(\Leftrightarrow\left(2+a^2+b^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow2+2ab+a^2+b^2+ab\left(a^2+b^2\right)\ge2+2a^2+2b^2+2a^2b^2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng với mọi \(a\ge1;b\ge1\))