K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì đường tròn (O’) cắt đường tròn (O ; OA) tại A và B nên OO’ là trung trực của AB

Suy ra : OO’ ⊥ AB     (1)

Vì đường tròn (O’) cắt đường tròn (O ; OC) tại C và D nên OO’ là trung trực của CD

Suy ra : OO’ ⊥ CD     (2)

Từ (1) và (2) suy ra : AB // CD.

25 tháng 7 2019

Ai giúp mình với mình nợ bài này lâu quá r

25 tháng 7 2019

O B A E C d D I G F

a) Gọi d là tiếp tuyến tại A của đường tròn (O) => d vuông góc OA => d vuông góc AB

Vì AB là đường kính của đường tròn (AB) nên d cũng là tiếp tuyến của (AB)

Vậy (O) và (AB) tiếp xúc nhau tại A (đpcm).

b) Gọi I là trung điểm đoạn AB => I là tâm của (AB) => ^ICA = ^IAC = ^OEA => IC // OE

Ta thấy OB = BI = IA = OA/3 => \(\frac{AI}{AO}=\frac{1}{3}\). Áp dụng ĐL Thales vào \(\Delta\)AEO có

\(\frac{AC}{AE}=\frac{AI}{AO}=\frac{1}{3}\) => AC = 1/3.AE (1)

Gọi OC,OD cắt đường tròn (O) cho trước lần lượt tại F,G. Khi đó DC // GF

Hay GF // AE. Mà GF và AE là các dây của đường tròn (O) nên (GE = (AF => ^EOG = ^AOF

Xét \(\Delta\)ODE và \(\Delta\)OCA: OD = OC, ^EOD = ^AOC (cmt), OE = OA => \(\Delta\)ODE = \(\Delta\)OCA (c.g.c)

=> ED = AC. Kết hợp với (1) suy ra AC = DE = AE/3 => AC = CD = DE (đpcm).

28 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên  ∆ ABC vuông tại C

CO = OA = (1/2)AB (tính chất tam giác vuông)

AC = AO (bán kính đường tròn (A))

Suy ra: AC = AO = OC

∆ ACO đều góc AOC = 60 °

∆ ADB nội tiếp trong đường tròn đường kính AB nên  ∆ ADB vuông tại D

DO = OB = OA = (1/2)AB (tính chất tam giác vuông)

BD = BO(bán kính đường tròn (B))

Suy ra: BO = OD = BD

∆ BOD đều

12 tháng 4 2018

a, Gọi I là trung điểm của AB, ta có: OI = OA – IA

b, Ta chứng minh được IC//BD//OE

Mà OB = BI = IA => AC = CD = DE