Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a/ Hai hàm số có đồ thị // với nhau khi
\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)
b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ
\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)
c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được
\(b=ma+3\)
\(\Leftrightarrow ma+3-b=0\)
Để phương trình này không phụ thuôc m thì
\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)
Tọa độ điểm cần tìm là M(0, 3)
d/ Ta có khoản cách từ O(0,0) tới (d) là 1
\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)
\(\Leftrightarrow\sqrt{1+m^2}=3\)
\(\Leftrightarrow m^2=8\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)
b: Để hai đường song song thì m+1=-2
=>m=-3
c: Gọi A,B lần lượt là giao của (d) với trục Ox và Oy
=>A(-3/m+1;0), B(0;3)
=>OA=3/|m+1|; OB=3
1/2*OA*OB=9
=>9/|m+1|=18
=>|m+1|=1/2
=>m=-1/2 hoặc m=-3/2
\(1,y=\left(m-2\right)x+3+1\) \(\left(d\right)\)
\(\left(d\right)\) đi qua \(A\left(1;-1\right)\)
\(\Rightarrow-1=m-2+m+1\)
\(\Rightarrow m=0\)
\(2,y=1-3x\left(d'\right)\)
Để: \(\left(d\right)//\left(d'\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-2=-3\\m+1\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne0\end{cases}}\)
\(3,\) Gọi \(A\) là giao điểm của \(\left(d\right)\) với \(Ox\)
\(B\) là giao điểm của \(\left(d\right)\) với \(Oy\)
Tọa độ \(A:\hept{\begin{cases}\left(m-2\right)x+m+1=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+1}{2-m}\\y=0\end{cases}}\)
Tọa độ \(B:\hept{\begin{cases}x=0\\m+1=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=m+1\end{cases}}\)
Độ dài \(OA:\sqrt{\left(\frac{m+1}{2-m}\right)^2}=|\frac{m+1}{2-m}|\)
Độ dài \(OB:\sqrt{\left(m+1\right)^2}=|m+1|\)
Kẻ \(OH\perp AB\) ta được: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)
\(\Leftrightarrow1=\frac{1}{\left(\frac{m+1}{2-m}\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow1=\frac{\left(2-m\right)^2}{\left(m+1\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m+1\right)^2=m^2-4m+4+1\)
\(\Leftrightarrow m^2+2m+1=m^2-4m+5\)
\(\Leftrightarrow m=\frac{2}{3}\)
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)
a:
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}m+1=2\\6< >-2\left(đúng\right)\end{matrix}\right.\)
=>m+1=2
=>m=1
c:
(d'): y=(m+1)x+6
=>(m+1)x-y+6=0
Khoảng cách từ O đến (d') là:
\(d\left(O;\left(d'\right)\right)=\dfrac{\left|0\cdot\left(m+1\right)+0\cdot\left(-1\right)+6\right|}{\sqrt{\left(m+1\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}\)
Để \(d\left(O;\left(d'\right)\right)=3\sqrt{2}\) thì \(\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}=3\sqrt{2}\)
=>\(\sqrt{\left(m+1\right)^2+1}=\sqrt{2}\)
=>\(\left(m+1\right)^2+1=2\)
=>\(\left(m+1\right)^2=1\)
=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)