Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
a) PT hoành dộ giao điểm d và (P):
x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)
d tiếp xúc với (P) <=> m=-2 tìm được x=-1
Tọa độ điểm A(-1;1)
b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1
Điều kiện để 2 giao điểm khác phía trục tung là:m >-1
Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)
Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)
Hệ phương trình tọa độ giao điểm:
\(\left\{{}\begin{matrix}y=mx-2\\3x+my=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\3x+m\left(mx-2\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\\left(m^2+3\right)x=2m+5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{5m-6}{m^2+3}\end{matrix}\right.\)
\(x+y=1-\frac{m^2}{m^2+3}=\frac{3}{m^2+3}\)
\(\Leftrightarrow\frac{2m+5}{m^2+3}+\frac{5m-6}{m^2+3}=\frac{3}{m^2+3}\)
\(\Leftrightarrow7m=4\Rightarrow m=\frac{4}{7}\)
Để hoành độ dương tung độ âm \(\Leftrightarrow\left\{{}\begin{matrix}\frac{2m+5}{m^2+3}>0\\\frac{5m-6}{m^2+3}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+5>0\\5m-6< 0\end{matrix}\right.\) \(\Rightarrow-\frac{5}{2}< m< \frac{6}{5}\)
Mong các bạn hướng dẫn mình cách làm 2 câu cuối.