K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Đáp án C

• Ta thấy d: y = (m + 2)x - m có a = m + 2 và d': y = -2x - 2m + 1 có a' = -2

• Để y = (m + 2)x - m là hàm số bậc nhất thì m + 2  ≠ 0 ⇔ m  ≠  -2

• Để d cắt d' ⇔ a  ≠  a' ⇔ m + 2 ≠  -2 ⇔ m ≠  -4

Vậy m  ≠  -2; m ≠  -4

4 tháng 4 2021

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0

 

 

4 tháng 4 2017

a) ta có pt hoành độ giao điểm: \(2x^2=x+1\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)

tại x= 1 thì ta có tọa độ giao điểm A(1;2)

tại x=\(\dfrac{-1}{2}\) thì ta có tọa độ giao điểm B(\(\dfrac{-1}{2};\dfrac{1}{2}\))

còn câu b) để từ từ mình suy nghĩ rồi giải sau

6 tháng 4 2017

mình làm ra được câu b rồi

ta có pt hđgđ

\(2x^2=2mx-m-2x+2\)

\(\Leftrightarrow2x^2-\left(2m-2\right)x+\left(m-2\right)=0 \)

\(\Delta=m^2-4m+5>0\)

\(\Rightarrow X_A=\dfrac{m-1-\sqrt{m^2-4m+5}}{2};X_B=\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\)

\(\Rightarrow Y_A=2\left(\dfrac{m-1-\sqrt{m^2-4m+5}}{2}\right)^2;Y_B=2\left(\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\right)^2\)

21 tháng 12 2021

a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)

Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)

Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)

Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có : 

\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)

mà a + b + c = 0 => 2 + 2 - 4 = 0 

vậy pt có 2 nghiệm 

\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)

20 tháng 12 2021

one cộng one bằng two

two cộng one bằng three ok

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Cách khác câu 4 (dùng AM-GM và pp chọn điểm rơi)

Lấy $k>0$. Áp dụng BĐT AM-GM cho các số dương thì:

$kx+\frac{4}{x}\geq 4\sqrt{k}$

$k(1-x)+\frac{9}{1-x}\geq 6\sqrt{k}$

Cộng theo vế:

$k+y\geq 10\sqrt{k}\Leftrightarrow y_{\min}=10\sqrt{k}-k$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} kx=\frac{4}{x}\\ k(1-x)=\frac{9}{1-x}\end{matrix}\right.\Rightarrow \frac{4}{x^2}=\frac{9}{(1-x)^2}\)

Kết hợp $1> x>0$ ta giải PT ra được $x=\frac{2}{5}$ nên $a+b=2+5=7$

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Câu 4:

$0< x< 1\Rightarrow x>0; 1-x>0$

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{4}{x}+\frac{9}{1-x}\right)(x+1-x)\geq (2+3)^2\)

\(\Leftrightarrow y\geq 25\). Vậy $y_{\min}=25$. Dấu "=" xác định tại \(\frac{2}{x}=\frac{3}{1-x}\Leftrightarrow x=\frac{2}{5}\)

$\Rightarrow a=2; b=5\Rightarrow a+b=7$

13 tháng 9 2015

a) (d) cắt (d') khi và chỉ khi 2m+1 \(\ne\) m-1 suy ra m \(\ne\) -2 .Vậy m \(\ne\) -2 thì (d) cắt (d').

b) (d) song song với (d') khi và chỉ khi 2m+1=m-1 và -(2m+3) \(\ne\) m suy ra m=-2 và m \(\ne\) -1.Vậy m=-2 thì (d) song song với (d').

6 tháng 4 2017

em mới học lớp 6 thôi,toán lớp 7 em còn chưa làm được thì nói gì toán lớp 9

anh thông cảm nha!!!

6 tháng 4 2017

a/ Bạn tự vẽ

b/ Phương trình hoành độ giao điểm của (P) và (d) là:

        \(\frac{-x^2}{2}=\frac{3}{2}x-m\)

Quy đồng bỏ mẫu, mẫu chung là 2

\(\Leftrightarrow-x^2=3x-2m\)

\(\Leftrightarrow-x^2-3x+2m=0\)

( a = -1; b = -3; c = 2m )

\(\Delta=b^2-4ac\)

    \(=\left(-3\right)^2-4.\left(-1\right).2m\)

     \(=9+8m\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow9+8m>0\Leftrightarrow m< -\frac{9}{8}\)

Vậy khi m < -9/8 thì (d) và (P) cắt nhau tại 2 điểm phân biệt