Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điện trở tương đương của đoạn mạch là:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{30.60}{30+60}=20\left(\Omega\right)\)
Do mắc song song nên \(U=U_1=U_2=30V\)
Cường độ dòng điện chạy qua mạch chính và mỗi mạch rẽ:
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{30}{20}=1,5\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{30}{30}=1\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{30}{60}=0,5\left(A\right)\end{matrix}\right.\)
Điện trở tương đương lúc này là:
\(R_{tđ}=R_{12}+R_3=20+40=60\left(\Omega\right)\)
Do mắc nối tiếp nên \(I=I_{12}=I_3=1,5\left(A\right)\)
Nhiệt năng đoạn mạch tiêu thụ trong 30ph:
\(A=P.t=I^2.R.t=1,5^2.60.30.60=243000\left(J\right)\)
Nhiệt lượng tỏa ra của R3 trong 30ph:
\(Q_{tỏa_3}=A_3=I_3^2.R_3.t=1,5^2.40.30.60=162000\left(J\right)\)
a) Vì R1//R2 nên: \(\frac{1}{R12}\)=\(\frac{1}{R1}\)+\(\frac{1}{R2}\)= 1/6+1/12= 1/4 => R12= 4(\(\Omega\))
Vì R3 nt R12 nên: Rtđ= R3 + R12 = 16 + 4 = 20 (\(\Omega\))
b) CĐDĐ qua mạch chính là: I= U/Rtđ= 30/20= 1,5(A)
TRong mạch song2 : \(\frac{I1}{I2}\)= \(\frac{R2}{R1}\)= \(\frac{12}{6}\)=2 \(\Leftrightarrow\) I1=2I2
Vì R3 nt R12 nên: I = I12=I3 = 1,5(A)
Mà: R12= R1+R2=> R12= 2R2 + R2 = 3R2
3R2 = 1,5A => R2= 0,5(A)
\(\Leftrightarrow\)R1= 2R2= 0,5 . 2= 1(A)
R1 nt R2 nt R3
\(=>I1=I2=I3=\dfrac{U}{R1+R2+R3}=\dfrac{U}{3R}\left(A\right)\)
R1//R2//R3
\(=>U1=U2=U3=U\) mà các điện trở R1=R2=R3=R
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R}+\dfrac{1}{R}+\dfrac{1}{R}=>\dfrac{1}{Rtd}=\dfrac{3}{R}=>Rtd=\dfrac{R}{3}\Omega\)
\(=>I'=I1=I2=I3=\dfrac{U}{Rtd}=\dfrac{3U}{R}A\)
a) Vì R1 nt R2 nên: Rtd = R1 + R2= 24+12= 36(ôm)
R1 nt R2 thì: I= I1= I2 = 0,5 (A)
HĐT giữa 2 đầu mỗi điện trờ là: I1=U1/R1 => U1=I1.R1 = 0,5 x 24= 12 (V)
I2=U2/R2 => U2=I2.R2= 0,5 x 12= 6(V)
b) Đổi: 20p = 1200s
Nhiệt lượng toả ra trong 20p của đoạn mạch là: Q= I2.Rtd.t= (0,5)2 . 36.1200= 10800(J)
c) Tóm tắt:
R3//R1
I2=3I1
Giải:
\(R_{tđ}=R_2+R_{13}=\dfrac{R_1.R_3}{R_1+R_3}+R_2\)
\(\Rightarrow3R_3=\dfrac{20.R_3}{20+R_3}+40\)
\(\Rightarrow3R_3=\dfrac{20R_3+20.40+40R_3}{20+R_3}\)
\(\Rightarrow60R_3+3R_3^2=20R_3+800+40R_3\)
\(\Rightarrow\left(3R_3-40\right)\left(3R_3+20\right)=0\Rightarrow R_3=\dfrac{40}{3}\left(\Omega\right)\)