Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử M(x;y;z)M(x;y;z) thỏa mãn −−→MA=k−−→MBMA→=kMB→ với k≠1k≠1.
Ta có −−→MA=(x1–x;y1–y;z1–z),−−→MB=(x2–x;y2–y;z2–z)MA→=(x1–x;y1–y;z1–z),MB→=(x2–x;y2–y;z2–z)
−−→MA=k−−→MB⇔⎧⎪⎨⎪⎩x1–x=k(x2–x)y1–y=k(y2–y)z1–z=k(z2–z)⇔⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩x=x1–kx21–ky=y1–ky21–kz=z1–kz21–kMA→=kMB→⇔{x1–x=k(x2–x)y1–y=k(y2–y)z1–z=k(z2–z)⇔{x=x1–kx21–ky=y1–ky21–kz=z1–kz21–k
Lời giải:
TXĐ: $x\neq -1$
Bài toán tương đương với chứng minh PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm phân biệt.
Ta có:
$2x+\frac{x^2-x+1}{x+1}=3$
$\Rightarrow 2x^2+2x+x^2-x+1=3x+3$
$\Leftrightarrow 3x^2-2x-2=0$
Dễ thấy $3.(-1)^2-2(-1)-2\neq 0$ và $\Delta'=1+6=7>0$ nên PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm pb khác $-1$
Ta có đpcm.
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>-m=4
hay m=-4
b: PTHĐGĐ là:
\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Leftrightarrow x^2-4x+2m-2=0\)
\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)
\(=16-8m+8=-8m+24\)
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
hay m<3
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)
Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)
=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)
\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)
\(\Leftrightarrow m^2-6m-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)