Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông cân tại A.Gọi D là 1 điểm bất kì trên cạnh BC ( D khác B và C).Và nằm trên cùng 1 nửa mặt phẳng BC và điểm A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :
a) 2 tam giác : AMB=ADC
b) A là trung điểm của MN.
a.Ta có : ΔABC vuông cân tại A (gt)
Mà MB⊥BC,NC⊥BC
→ˆMBA=ˆACD=45 độ (Tính chất tam giác vuông cân)
Lại có : AD⊥MN,AB⊥AC
→ˆMAB+ˆBAD=ˆBAD+ˆDAC(=90độ)
→ˆMAB=ˆDAC
Mặt khác AB=AC→ΔMAB=ΔDAC(g.c.g)
→AM=AD,BM=DC
b.Tương tự câu a ta chứng minh được AN=AD,CN=BD
→AM=AN→A là trung điểm MN
c.Từ a,b →BC=BD+DC=CN+BM
d.Ta có : AM=AD,AD⊥MN→ΔAMD vuông cân tại A
Tương tự ΔAND vuông cân tại A
→ˆAMD=ˆAND=45độ→ΔDMN vuông cân tại D
E A B M D C
GT | M nằm giữa A, B. △AMD đều; △MBC đều AD ∩ BC = { E } |
KL | a, △ABE đều b, △AMC = △DMB |
Bài giải:
1, Vì △AMD đều => AMD = DAM = MDA = 60o và AM = MD = AD
Vì △MBC đều => MBC = BMC = BCM = 60o và MC = MB = BC
Xét △ABE có: ABE + AEB + EAB = 180o (tổng 3 góc trong tam giác)
=> 60o + 60o + AEB = 180o
=> AEB = 60o
Xét △ABE có: ABE = AEB = EAB = 60o => △ABE đều
2, Ta có: DMB = DMC + CMB
CMA = DMC + DMA
Mà CMB = DMA = 60o
=> DMB = CMA
Xét △AMC và △DMB
Có: AM = DM (cmt)
CMA = DMB (cmt)
MC = MB (cmt)
=> △AMC = △DMB (c.g.c)
a: Vì A nằm trên đường trung trực của BC
nên AB=AC
Vì D nằm trên đường trung trực của BC
nen DB=DC
Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó:ΔABD=ΔACD
b: Gọi giao điểm của BC và AD là O
=>O là trung điểm của BC
Trường hợp 1: A,D nằm cùng phía
\(AO=\sqrt{AB^2-BO^2}=4.5\left(cm\right)\)
\(DO=\sqrt{6.5^2-6^2}=2.5\left(cm\right)\)
=>AD=2(cm)
TH2: A,D khác phía
\(AO=\sqrt{7.5^2-6^2}=4.5\left(cm\right)\)
\(DO=\sqrt{6.5^2-6^2}=2.5\left(cm\right)\)
AD=AO+DO=7(cm)