K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

Ta thấy \(\left(2-2+1\right)\left(1-0+1\right)=2>0\Rightarrow A,B\) khác phía so với \(\Delta\)

Lấy B' đối xứng với B qua \(\Delta\)

BB' có phương trình \(2x+y+m=0\)

Do B thuộc đường thẳng BB' nên \(m=-2\Rightarrow BB':2x+y-2=0\)

B' có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\Rightarrow B'=\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)

a, \(MA+MB=MA+MB'\ge AB'\)

\(min=AB'\Leftrightarrow M\) là giao điểm của AB' và \(\Delta\)

\(\Leftrightarrow...\)

b, \(\left|MA-MB\right|=\left|MA-MB'\right|\le AB'\)

\(max=AB'\Leftrightarrow M\) là giao điểm của AB' và \(\Delta\)

\(\Leftrightarrow...\)

NV
30 tháng 10 2019

Gọi \(M\left(x;x\right)\Rightarrow\overrightarrow{AM}=\left(x+2;x-7\right)\) ; \(\overrightarrow{BM}=\left(x-1;x-2\right)\); \(\overrightarrow{CM}=\left(x-7;x-9\right)\)

\(\Rightarrow T=\left(x+2\right)^2+\left(x-7\right)^2+\left(x-1\right)^2+\left(x-2\right)^2+\left(x-7\right)^2+\left(x-9\right)^2\)

\(T=6x^2-48x+188\)

\(T=6\left(x-4\right)^2+92\ge92\)

\(T_{min}=92\) khi \(x=4\Rightarrow M\left(4;4\right)\)

NV
14 tháng 5 2019

Gọi \(M\left(2a-7;-a\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2a-8;-a-3\right)\\\overrightarrow{BM}=\left(2a-11;-a-8\right)\\\overrightarrow{CM}=\left(2a-10;-a-4\right)\end{matrix}\right.\)

\(\Rightarrow P=MA^2+3MB^2-5MC^2\)

\(=\left(2a-8\right)^2+\left(a+3\right)^2+3\left(2a-11\right)^2+3\left(a+8\right)^2-5\left(2a-10\right)^2-5\left(a+4\right)^2\)

\(=-5a^2+50a+48=-5\left(a^2-10a+25\right)+173\)

\(=-6\left(a-5\right)^2+173\le173\)

\(\Rightarrow P_{max}=173\) khi \(a=5\Rightarrow M\left(3;-5\right)\)

21 tháng 4 2018

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

a, Cách 1: Gọi O’ là điểm đối xứng với O qua (Δ)

⇒ OO’ ⊥ Δ tại trung điểm I của OO’.

+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

OO’ ⊥ Δ ⇒ OO’ nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà O(0, 0) ∈ OO’

⇒ Phương trình đường thẳng OO’: x + y = 0.

+ I là giao OO’ và Δ nên tọa độ của I là nghiệm của hệ phương trình:

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi O’(x, y) là điểm đối xứng với O qua Δ.

+ Trung điểm I của OO’ là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy O’(–2; 2).

b)

+ Vì O và A nằm cùng một nửa mặt phẳng bờ là đường thẳng Δ nên đoạn thẳng OA không cắt Δ.

O’ và A thuộc hai nửa mặt phẳng khác nhau bờ là đường thẳng Δ nên O’A cắt Δ.

Do O’ đối xứng với O qua đường thẳng ∆ nên ∆ là đường trung trực của đoạn thẳng OO’, với mọi M ∈ Δ ta có MO = MO’.

Độ dài đường gấp khúc OMA bằng OM + MA = O’M + MA ≥ O’A.

⇒ O’M + MA ngắn nhất khi O’M + MA = O’A ⇔ M là giao điểm của O’A và Δ.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà A(2; 0) ∈ O’A

⇒ Phương trình đường thẳng O’A : 1(x - 2) + 2(y - 0)= 0 hay x + 2y – 2 = 0.

M là giao điểm của O’A và Δ nên tọa độ điểm M là nghiệm của hệ :

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy điểm M cần tìm là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

27 tháng 6 2016

Đường tròn (C) có tâm I(1; m), bán kính R = 5. 
Gọi H là trung điểm của dây cung AB. 
Ta có IH là đường cao của tam giác IAB:

undefined

27 tháng 6 2016

Mình làm ở words rồi copy vô paint, tại đang nghe nhạc nên có hình KM ở góc phải

NV
25 tháng 6 2020

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+1\right)\\\overrightarrow{BM}=\left(-3;m-2\right)\end{matrix}\right.\)

\(T=AM^2+BM^2=1+\left(m+1\right)^2+9+\left(m-2\right)^2\)

\(=10+m^2+2m+1+m^2-4m+4\)

\(=2m^2-2m+15=2\left(m-\frac{1}{2}\right)^2+\frac{29}{2}\ge\frac{29}{2}\)

Dấu "=" xảy ra khi \(m=\frac{1}{2}\) hay \(M\left(0;\frac{1}{2}\right)\)

NV
9 tháng 1 2022

Do M thuộc d nên tọa độ có dạng: \(\left(2m+2;m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-2m-2;1-m\right)\\\overrightarrow{MB}=\left(1-2m;4-m\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}=\left(-6m;9-3m\right)\)

\(\Rightarrow T=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\sqrt{36m^2+\left(9-3m\right)^2}=\sqrt{45m^2-54m+81}\)

\(=\sqrt{25\left(m-\dfrac{3}{5}\right)^2+\dfrac{324}{5}}\ge\sqrt{\dfrac{324}{5}}\)

Dấu "=" xảy ra khi \(m=\dfrac{3}{5}\Rightarrow M\left(\dfrac{16}{5};\dfrac{3}{5}\right)\)