Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Để hai đường song song thì 2/1=-6/k<>10/4
=>-6/k=2
=>k=-3
b: Thay x=-1 và y=-2 vào (d2), ta được:
-1-2k=4
=>2k=-5
=>k=-5/2
a) d1//d2<=> \(\dfrac{2}{1}=-\dfrac{6}{k}\Leftrightarrow k=-3\)
b)thay tọa độ A(-1;-2) vào PT d1 ta được: -2+12=10 (đúng)0
vậy A(-1;-2) thuộc d1
=>hai đường thẳng có điểm chung A(-1;-2) <=>
A thuộc d2.
thay tọa độ A vào PT d2 ta được: -1-2k=4<=> k=-5/2
a) Để d1//d2 thì: \(\dfrac{2}{1}=\dfrac{-6}{k}\)
\(\Rightarrow k=-3\left(TM\right)\)
Vậy với k=-3 thì d1//d2.
b)Thay x=-1; y=-2 vào d1:
-2+12=10(LĐ). Vậy A thuộc d1.
Thay x=-1; y=-2 vào d2:
-1-2k=4\(\Rightarrow k=\dfrac{-5}{2}\left(TM\right)\)
Vậy với \(k=\dfrac{-5}{2}\) thì hai đường thẳng có điểm chung là A(1;-2).
a, cắt : a khác a'
b, b= b'; a khác a'
c, a=a' ; b khác b'
d, a*a'= -1
e, a= a' ;b= b'
* y= (k-3)x-3k+3 (d1)
a= k-3 ; b= -3k+3
* y=(2k+1)x+k+5 (d2)
a'= 2k+1 ; b' k+5
a, Để hai đường thẳng cắt nhau thì :
\(a\ne a'< =>k-3\ne2k+1\)
\(< =>k-2k\ne1+3\)
\(< =>-k\ne4\)
<=>\(k\ne-4\)
Vậy \(k\ne-4\) thì hai đường thẳng cắt nhau
b, Để hai đường thẳng cắt nhau tại điểm trên trục tung thì :
\(\begin{cases}a\ne a'\\b=b'\end{cases}\Leftrightarrow\begin{cases}k-3\ne2k+1\\-3k+3=k+5\end{cases}}\)\(\Leftrightarrow\begin{cases}k-2k\ne1+3\\-3k-k=5-3\end{cases}\Leftrightarrow\begin{cases}k\ne-4\\k=-\frac{1}{2}\left(TMĐK:k\ne-4\right)\end{cases}}\)Vậy \(k=-\frac{1}{2}\) thì hai đường thẳng cắt nhau tại điểm trên trục tung
a) d1//d2 khi và chỉ khi \(\dfrac{2}{1}=-\dfrac{6}{k}\Rightarrow k=-3\)
b) thay tọa độ A(-1;-2) vào PT d1 ta được: 2(-1)-6(-2)=10 (đúng)
=> A thuộc d1.
=> hai đường thẳng có điểm chung là A <=> A thuộc d2
thay tọa độ A(-1;-2) vào PT d2 ta được: -1+k(-2)=4<=>k=-5/2