K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

a)

`P(x)=7x^3+(4x^2-3x^2)-x+5=7x^3+x^2-x+5`

`Q(x)=-7x^3-x^2+2x+(6-8)=-7x^3-x^2+2x-2`

b)

`P(x)+Q(x) = 7x^3+x^2-x+5-7x^3-x^2+2x-2`

`=(7x^3-7x^3)+(x^2-x^2)+(2x-x)+(5-2)`

`=x+3`

`P(x)-Q(x)=7x^3+x^2-x+5-(-7x^3-x^2+2x-2)`

`= 7x^3+x^2-x+5+7x^3+x^2-2x+2`

`=(7x^3+7x^3)+(x^2+x^2)-(x+2x)+(5+2)`

`=14x^3+2x^2-3x+7`

c) `A(x) = P(x)+Q(x)=x+3`

`A(x)=0 <=> x+3=0 <=>x=-3`.

a: P(x)=-5x^3+6x^2+3x-1

Q(x)=-5x^3+6x^2+4x+2

b: H(x)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2

=-10x^3+12x^2+7x+1

T(x)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2

=-x-3

c: T(x)=0

=>-x-3=0

=>x=-3

d: G(x)=-(-10x^3+12x^2+7x+1)

=10x^3-12x^2-7x-1

2 tháng 5 2022

\(a,\)Thu gọn và sắp xếp :

\(P\left(x\right)=x^5-3x^2+4x-5\)

\(Q\left(x\right)=-7x^5-x^2+8x-5\)

\(b,Q\left(x\right)-P\left(x\right)=-7x^5-x^2+8x-5-x^5+3x^2-4x+5\)

                          \(=-8x^5+2x^2+4x\)

 

 

8 tháng 6 2018

Giải:

a) \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+15\)

\(\Leftrightarrow P\left(x\right)=5x^5+7x-4x^2+15\)

\(\Leftrightarrow P\left(x\right)=5x^5-4x^2+7x+15\)

\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)

\(\Leftrightarrow Q\left(x\right)=5x^5+3x-4x^2+8\)

\(\Leftrightarrow Q\left(x\right)=5x^5-4x^2+3x+8\)

b) \(P\left(x\right)-Q\left(x\right)\)

\(=5x^5-4x^2+7x+15-\left(5x^5-4x^2+3x+8\right)\)

\(=5x^5-4x^2+7x+15-5x^5+4x^2-3x-8\)

\(=4x+7\)

Để đa thức trên có nghiệm thì

\(4x+7=0\)

\(\Leftrightarrow4x=-7\)

\(\Leftrightarrow x=-\dfrac{7}{4}\)

Vậy ...

9 tháng 8 2017

a)  \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)

   \(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\) 

Q(x)  \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)

b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\)\(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)

16 tháng 4 2018

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)

b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)

\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)

8 tháng 4 2022

a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)

\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)

a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3

=4x^4-9x^3+x^2-5x+3

Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x

=5x^4-3x^3+4x^2-5x-2

b)

P(x)

-bậc:4

-hệ số tự do:3

-hệ số cao nhất:4

Q(x)

-bậc :4

-hệ số tự do :-2

-hệ số cao nhất:5

7 tháng 5 2019

\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)

\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)

7 tháng 5 2019

\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x+6\)

\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)

\(=6x^4-4x^3+10x^2-11x-4\)

a: P(x)=-x^3+2x^3-x^2+3x^2+x-1=x^3+2x^2+x-1

Q(x)=-3x^3+2x^3-x^2+3x-4x+3=-x^3-x^2-x+3

b: H(x)=P(x)+Q(X)

=x^3+2x^2+x-1-x^3-x^2-x+3

=x^2+2

c: H(-1)=H(1)=1+2=3

d: H(x)=x^2+2>=2>0 với mọi x

=>H(x) ko có nghiệm