K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

\(P(x) + Q(x) =  - 3{x^4} - 8{x^2} + 2x + 5{x^3} - 3{x^2} + 4x - 6\)

\( =  - 3{x^4} + 5{x^3} + ( - 8{x^2} - 3{x^2}) + (2x + 4x) - 6\)

\( =  - 3{x^4} + 5{x^3} - 11{x^2} + 6x - 6\)

\(P(x) - Q(x) =  - 3{x^4} - 8{x^2} + 2x - 5{x^3} + 3{x^2} - 4x + 6\)

\( =  - 3{x^4} - 5{x^3} + ( - 8{x^2} + 3{x^2}) + (2x - 4x) + 6\)

\( =  - 3{x^4} - 5{x^3} - 5{x^2} - 2x + 6\)

9 tháng 3 2023

Trên là 3 xuống thành 2 rồi :v 

Chỗ :  \(-x^2\) 

9 tháng 3 2023

` P(x) = x^3-2x^2+x-2`

`Q(x) = 2x^3 - 4x^2+ 3x – 5​​​​6`

a) `P(x) -Q(x)`

`= x^3-2x^2+x-2 - 2x^3 +4x^2 -3x +56`

`=(x^3-2x^3) +(4x^2-2x^2) +(x-3x) +(-2+56)`

`= -x^2 +2x^2 -2x +54`

b) Thay `x=2` vào `P(x)` ta đc

`P(2) = 2^3 -2*2^2 +2-2`

`= 8-8+2-2 =0`

Vậy chứng tỏ `x=2` là nghiệm của đa thức `P(x)`

Thay `x=2` vào `Q(x)` ta đc

`Q(2) = 2*2^3 -4*2^2 +3*2-56`

`=16 -16+6-56`

`= -50`

Vậy chứng tỏ `x=2` là ko nghiệm của đa thức `Q(x)`

20 tháng 5 2022

chị thấy câu B hơi rối

18 tháng 4 2022

\(P\left(x\right)+Q\left(x\right)=\left(2x^4+x^3-4x+5\right)+\left(x^4+3x^3+2x-1\right)\)

                       \(=2x^4+x^3-4x+5+x^4+3x^3+2x-1\)

                      \(=\left(2x^4+x^4\right)+\left(x^3+3x^3\right)+\left(-4x+2x\right)+\left(5-1\right)\)

                      \(=3x^4+4x^3-2x+4\)

\(R\left(x\right)+P\left(x\right)=x^4-2x^2+1\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-P\left(x\right)\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-\left(2x^4+x^3-4x+5\right)\)

\(\Rightarrow R\left(x\right)=x^4-2x^2+1-2x^4-x^3+4x-5\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^4\right)+\left(-2x^2\right)+\left(1-5\right)+\left(-x^3\right)+4x\)

\(\Rightarrow R\left(x\right)=-x^4-2x^2-4-x^3+4x\)

20 tháng 5 2022

a)\(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b) Sửa  Tìm hệ số cao nhất và hệ số tự do của đa thức Q(x)

 hệ số cao nhất :9

 hệ số tự do  :- 14

c)\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(\Leftrightarrow M\left(x\right)=x^5+2x^4-9x^3-x+5x^4+9x^3+4x^2-14\)

\(M\left(x\right)=x^5+6x^4-x-14\)

20 tháng 5 2022

d)\(M\left(2\right)=2^5+6.2^4-2-14=32-96-2-14=-80\)

\(M\left(-2\right)=\left(-2\right)^5+6.\left(-2\right)^4+2-14=-32-96+2-14=-140\)

\(M\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5+6.\left(\dfrac{1}{2}\right)^4-\dfrac{1}{2}-14=\dfrac{1}{32}+\dfrac{3}{8}-\dfrac{1}{2}-14=-\dfrac{475}{32}\)

27 tháng 5 2020

P(x) + Q(x) = 4x3 + x2 - x + 5 + ( -2 )x2 + 4x - 1

                   = 4x3 + ( 1 - 2 )x2 + ( 4 - 1 )x + ( 5 - 1 )

                   = 4x3 - x2 + 3x + 4

P(x) - Q(x) = ( 4x3 + x2 - x + 5 ) - ( -2x2 + 4x - 1 )

                  = 4x3 + x2 - x + 5 + 2x2 - 4x + 1

                  = 4x3 + ( 1 + 2 )x2 -x - 4x + ( 5 + 1 )

                  = 4x3 + 3x2 - 5x + 6

`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)

`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`

`= x^4+3x^3+x^2+2x+2`

 

`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)

`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`

`= x^4+x^3+2x^2+2x+1`

 

`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`

`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`

`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`

`= 2x^4+4x^3+3x^2+4x+3`

`@`\(\text{dn inactive.}\)

P(x)=x^4+3x^3+x^2+2x+2

Q(x)=x^4+x^3+2x^2+2x+1

P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3

a: \(P\left(x\right)=x-2x^2+3x^5+x^4+x-1\)

\(=3x^5+x^4-2x^2+2x-1\)

\(Q\left(x\right)=3-2x-2x^2+x^4-3x^5-x^4+4x^2\)

\(=-3x^5+2x^2-2x+3\)

b: P(x)+Q(x)

\(=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)

\(=x^4+2\)

P(x)-Q(x)

\(=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-4\)