Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho f(x)=ax^2+bx+c với a,b,c là số hữu tỉ .Biết 13a+b+2c>0
Chứng Minh: trong 2 biểu thức f(-2);f(3) ít nhất có 1 biểu thức dương
hãy tích khi ko muốn tích nha các bạn
đùa thui!!!
Ta có:
\(P\left(1\right)=a+b+c\)
\(P\left(4\right)=16a+4b+c\)
\(P\left(9\right)=81a+9b+c\)
Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ
=> \(5a+b\)là số hữu tỉ (1)
Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ
=> \(10a+b\)là số hữu tỉ (2)
Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ
=> a là số hữu tỉ
Từ (1)=> b là số hữu tỉ
=> c là số hữu tỉ
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
\(f\left(x\right)=ax^2+bx+c\)
Ta có : \(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)
\(=13a+b+c\)
\(=0\)
\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)
\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)
\(\Rightarrow\) \(đpcm\)
Study well ! >_<
mình chịu