Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(F\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)
\(G\left(x\right)=x^5+7x^4+2x^3+2x^2-3x-9\)
b) \(F\left(x\right)+G\left(x\right)=x+3x^2\)
F(x) + G(x) = \(9-x^5+4x-2x^3+x^2-7x^4-x^5+9-2x^2-7x^4-2x^3+3x\)
=\(18-2x^5+7x-4x^3-x^2-14x^4\)
a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)
\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)
\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)
\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)
b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\)
hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)
\(=3x^3-x^4+4-5x\)
Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)
Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)
hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)
\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)
\(=x^3+10x^2-5x^4+10-3x\)
Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
a)\(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\\ B\left(x\right)=x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
b)\(A\left(x\right)+B\left(x\right)\)
\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)+\left(x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\\ =5x^2-4x^4-2x^3+4x^2+3x+6+x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\\ =\left(5x^5+x^5\right)+\left(-4x^4+2x^4\right)+\left(-2x^3-2x^3\right)+\left(4x^2+3x^2\right)+\left(3x-x\right)+\left(6+\frac{1}{4}\right)\\ =6x^5-2x^4-4x^3+7x^2+2x+\frac{25}{4}\)
Bài 1:
a)
\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)
\(=2x^3+4x-1\)
b)
\(F-G+H=0\)
\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)
\(\Leftrightarrow 2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
a)
\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)
\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)
\(=-x^3-2x^2-5x+7\)
\(B=-3x^4-2x^3+10x^2-8x+5x^3\)
\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)
\(=-3x^4+3x^3+10x^2-8x\)
b)
\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)
\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)
\(=-3x^4+2x^3+8x^2-13x+7\)
\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)
\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)
\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)
\(=3x^4-4x^3-12x^2+3x+7\)
a) Ta có : \(A\left(x\right)+B\left(x\right)\)
\(=2x^3+2x-3x^2+1+2x^2+3x^3-x-5\)
\(=\left(2x^3+3x^3\right)+\left(-3x^2+2x^2\right)+\left(2x-x\right)+\left(1-5\right)\)
\(=5x^3-x^2-x-4\)
b) Ta sẽ sắp xếp như sau :
\(A\left(x\right)=2x^3-3x^2+2x+1\)
\(B\left(x\right)=3x^3+2x^2-x-5\)
c) Ta có : \(A\left(x\right)-B\left(x\right)\)
\(=\left(2x^3+2x-3x^2+1\right)-\left(2x^2+3x^3-x-5\right)\)
\(=2x^3+2x-3x^2+1-2x^2-3x^3+x+5\)
\(=\left(2x^3-3x^3\right)+\left(-3x^2-2x^2\right)+\left(2x+x\right)+\left(1+5\right)\)
\(=-x^3-5x^2+3x+6\)
a) A(x) = 2x4 - x3 + 2x5 - x + 1
= 2x5 + 2x4 - x3 - x + 1
Bậc : 5
Hệ số cao nhất : 6
Hệ số tự do : 1
B(x) = x3 - 4x2 - 2x5 + x - 3x4 + 2
= -2x5 - 3x4 + x3 - 4x2 + 2
Bậc : 5
Hệ số cao nhất : -2
Hệ số tự do : 2
Lời giải:
a.
$A(x)=-x^5-7x^4-2x^3+x^2+4x+9$
$B(x)=x^5+7x^4+2x^3+2x^2-3x-9$
b.
$A(x)+B(x)=(-x^5-7x^4-2x^3+x^2+4x+9)+(x^5+7x^4+2x^3+2x^2-3x-9)$
$=(-x^5+x^5)+(-7x^4+7x^4)+(-2x^3+2x^3)+(x^2+2x^2)+(4x-3x)+(9-9)=3x^2+x$
$A(x)-B(x)=(-x^5-7x^4-2x^3+x^2+4x+9)-(x^5+7x^4+2x^3+2x^2-3x-9)$
$=(-x^5-x^5)+(-7x^4-7x^4)+(-2x^3-2x^3)+(x^2-2x^2)+(4x+3x)+(9+9)=-2x^5-14x^4-4x^3-x^2+7x+18$