K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:

a.

$A(x)=-x^5-7x^4-2x^3+x^2+4x+9$

$B(x)=x^5+7x^4+2x^3+2x^2-3x-9$

b. 

$A(x)+B(x)=(-x^5-7x^4-2x^3+x^2+4x+9)+(x^5+7x^4+2x^3+2x^2-3x-9)$

$=(-x^5+x^5)+(-7x^4+7x^4)+(-2x^3+2x^3)+(x^2+2x^2)+(4x-3x)+(9-9)=3x^2+x$

$A(x)-B(x)=(-x^5-7x^4-2x^3+x^2+4x+9)-(x^5+7x^4+2x^3+2x^2-3x-9)$

$=(-x^5-x^5)+(-7x^4-7x^4)+(-2x^3-2x^3)+(x^2-2x^2)+(4x+3x)+(9+9)=-2x^5-14x^4-4x^3-x^2+7x+18$

17 tháng 4 2018

a)  \(F\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)

\(G\left(x\right)=x^5+7x^4+2x^3+2x^2-3x-9\)

b)   \(F\left(x\right)+G\left(x\right)=x+3x^2\)

F(x) + G(x) = \(9-x^5+4x-2x^3+x^2-7x^4-x^5+9-2x^2-7x^4-2x^3+3x\)

=\(18-2x^5+7x-4x^3-x^2-14x^4\)

17 tháng 4 2018

c) F(x) + G(x) = \(x+3x^2=0\Rightarrow x.\left(1+3x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\1+3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)

21 tháng 3 2021

a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)

\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)

\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)

\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)

b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)

\(=3x^3-x^4+4-5x\)

Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)

Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)

hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)

\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)

\(=x^3+10x^2-5x^4+10-3x\)

Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2

1 tháng 6 2020

a)\(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\\ B\left(x\right)=x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

b)\(A\left(x\right)+B\left(x\right)\)

\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)+\left(x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\\ =5x^2-4x^4-2x^3+4x^2+3x+6+x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\\ =\left(5x^5+x^5\right)+\left(-4x^4+2x^4\right)+\left(-2x^3-2x^3\right)+\left(4x^2+3x^2\right)+\left(3x-x\right)+\left(6+\frac{1}{4}\right)\\ =6x^5-2x^4-4x^3+7x^2+2x+\frac{25}{4}\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Bài 1:
a)

\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)

\(=2x^3+4x-1\)

b)

\(F-G+H=0\)

\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)

\(\Leftrightarrow 2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Bài 2:

a)

\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)

\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)

\(=-x^3-2x^2-5x+7\)

\(B=-3x^4-2x^3+10x^2-8x+5x^3\)

\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)

\(=-3x^4+3x^3+10x^2-8x\)

b)

\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)

\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)

\(=-3x^4+2x^3+8x^2-13x+7\)

\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)

\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)

\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)

\(=3x^4-4x^3-12x^2+3x+7\)

25 tháng 3 2020

a) Ta có : \(A\left(x\right)+B\left(x\right)\)

\(=2x^3+2x-3x^2+1+2x^2+3x^3-x-5\)

\(=\left(2x^3+3x^3\right)+\left(-3x^2+2x^2\right)+\left(2x-x\right)+\left(1-5\right)\)

\(=5x^3-x^2-x-4\)

b) Ta sẽ sắp xếp như sau :

\(A\left(x\right)=2x^3-3x^2+2x+1\)

\(B\left(x\right)=3x^3+2x^2-x-5\)

c) Ta có : \(A\left(x\right)-B\left(x\right)\)

\(=\left(2x^3+2x-3x^2+1\right)-\left(2x^2+3x^3-x-5\right)\)

\(=2x^3+2x-3x^2+1-2x^2-3x^3+x+5\)

\(=\left(2x^3-3x^3\right)+\left(-3x^2-2x^2\right)+\left(2x+x\right)+\left(1+5\right)\)

\(=-x^3-5x^2+3x+6\)

1 tháng 6 2020

a) A(x) = 2x4 - x+ 2x5 - x + 1

= 2x5 + 2x4 - x3 - x + 1 

Bậc : 5 

Hệ số cao nhất : 6

Hệ số tự do : 1

B(x) = x3 - 4x2 - 2x5 + x - 3x4 + 2

= -2x5 - 3x4 + x3 - 4x2 + 2

Bậc : 5

Hệ số cao nhất : -2

Hệ số tự do : 2