K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: M(x)=5x^4+4x^3+2x+1-5x^4+x^3+3x^2+x-1

=5x^3+3x^2+3x

b: N(x)=5x^4+4x^3+2x+1+5x^4-x^3-3x^2-x+1

=10x^4+3x^3-3x^2+x+2

`@` `\text {dnammv}`

` \text {M(x)-A(x)=B(x)}`

`-> \text {M(x)=A(x)+B(x)}`

`-> M(x)=(5x^4 + 4x^3 + 2x + 1)+(-5x^4 + x^3 + 3x^2 + x - 1)`

`= 5x^4 + 4x^3 + 2x + 1-5x^4 + x^3 + 3x^2 + x - 1`

`= (5x^4-5x^4)+(4x^3+x^3)+3x^2+(2x+x)+(1-1)`

`= 5x^3+3x^2+3x`

`b,`

`\text {N(x)=A(x)-B(x)}`

`N(x)=(5x^4 + 4x^3 + 2x + 1)-(-5x^4 + x^3 + 3x^2 + x - 1)`

`= 5x^4 + 4x^3 + 2x + 1+5x^4 - x^3 - 3x^2 - x + 1`

`= (5x^4+5x^4)+(4x^3-x^3)-3x^2+(2x-x)+(1+1)`

`= 10x^4+3x^3-3x^2+x+2`

`a,`

`P(x)=M(x)+N(x)`

`P(x)=`\(\left(5x^4+8x^2-9x^3-12x-6\right)+\left(-5x^2+9x^3-5x^4+12x-8\right)\)

`P(x)= 5x^4+8x^2-9x^3-12x-6-5x^2+9x^3-5x^4+12x-8`

`P(x)=(5x^4-5x^4)+(-9x^3+9x^3)+(8x^2-5x^2)+(-12x+12x)+(-6-8)`

`P(x)=3x^2-14`

`b,`

`M(x)=N(x)+Q(x)`

`-> Q(x)=M(x)-N(x)`

`-> Q(x)=(5x^4+8x^2-9x^3-12x-6)-(-5x^2+9x^3-5x^4+12x-8)`

`Q(x)=5x^4+8x^2-9x^3-12x-6+5x^2-9x^3+5x^4-12x+8`

`Q(x)=(5x^4+5x^4)+(-9x^3-9x^3)+(8x^2+5x^2)+(-12x-12x)+(-6+8)`

`Q(x)=10x^4-18x^3+13x^2-24x+2`

10 tháng 4 2020

dsssws

15 tháng 3 2017

Ta có p(x) + q(x)

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Bậc của đa thức p ( x )   +   q ( x )   =   4 x 4   +   6 x 3   -   6 x 2   +   6 x   -   6   l à   4

Chọn đáp án C

`@` `\text {Ans}`

`\downarrow`

`a)`

`A(x) = \(3(x^2+2-4x)-2x(x-2)+17\)

`= 3x^2 + 6 - 12x - 2x^2 + 4x + 17`

`= x^2 - 8x + 23`

Hệ số cao nhất: `1`

Hệ số tự do: `23`

`B(x) = \(3x^2-7x+3-3(x^2-2x+4)\)

`=3x^2 - 7x + 3 - 3x^2 + 6x - 12`

`= -x - 9`

Hệ số cao nhất: `-1`

Hệ số tự do: `-9`

`b)`

`N(x) - B(x) = A(x)`

`=> N(x) = A(x) + B(x)`

`=> N(x) = (x^2 - 8x + 23)+(-x-9)`

`= x^2 - 8x + 23 - x - 9`

`= x^2 - 9x + 14`

 

`A(x) - M(x) = B(x)`

`=> M(x) = A(x) - B(x)`

`=> M(x) = (x^2 - 8x + 23) - (-x - 9)`

`= x^2 - 8x + 23 + x+9`

`= x^2 - 7x +32`

14 tháng 8 2023

a)A(x) = 3(x^2 + 2 - 4x) - 2x(x - 2) + 17

           = 3x^2 + 6 - 12x - 2x^2 + 4x + 17

           = x^2 - 2x + 23

b)B(x) = 3x^2 - 7x + 3 - 3(x^2 - 2x + 4)

           = 3x^2 - 7x + 3 - 3x^2 + 6x - 12

           = -x + -9

A(x) = x^2 - 2x + 23

B(x) = -x - 9

Hệ số cao nhất của đa thức A(x) là 1, hệ số tự do của A(x) là 23.

Hệ số cao nhất của đa thức B(x) là -1, hệ số tự do của B(x) là -9.

b)

N(x) - B(x) = A(x)

N(x) - (-x - 9) = x^2 - 2x + 23

N(x) + x + 9 = x^2 - 2x + 23

N(x) = x^2 - 3x + 14

Vậy, N(x) = x^2 - 3x + 14.

A(x) - M(x) = B(x)

x^2 - 2x + 23 - M(x) = -x - 9

x^2 - 2x + x + 9 + 23 = M(x)

x^2 - x + 32 = M(x)

Vậy, M(x) = x^2 - x + 32.

 

b)

Sửa đề: f(x)=A(x)+B(x)

Ta có: f(x)=A(x)+B(x)

\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

\(=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

a) Ta có: \(A\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

\(=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\dfrac{1}{4}x\)

\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Ta có: \(B\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

\(=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\dfrac{1}{4}\)

\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

\(\cdot\) `\text {dnammv}`

`7,`

`a,`

`M(x)=\(-5x^4+3x^5+x\left(x^2+5\right)+14x^4-6x^5-x^3+x-1\)

`M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1`

`=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`

`=-3x^5+9x^4+6x-1`

`N(x)=x^4(x - 5) - 3x^3 + 3x + 2x^5 - 4x^4 + 3x^3 - 5`

`= x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5`

`= 3x^5-9x^4+3x-5`

`b,`

`H(x)= N(x)+ M(x)`

`-> H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5)`

`= -3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`

`= (-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`

`= 9x-6`

`G(x)=M(x)-N(x)`

`-> G(x)= (-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)`

`= -3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`

`= (-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`

`= -6x^5+18x^4+3x+4`

`c,`

`H(x)=9x-6`

Hệ số cao nhất: `9`

Hệ số tự do: `-6`

`G(x)= -6x^5+18x^4+3x+4`

Hệ số cao nhất: `-6`

Hệ số tự do: `4`

`d,`

`H(1)=9*1-6=9-6=3`

`H(-1)=9*(-1)-6=-9-6=-15`

 

`G(1)=-6*1^5+18*1^4+3*1+4=-6+18+3+4=12+3+4=15+4=19`

`G(0)=-6*0^5+18*0^4+3*0+4=0+0+0+4=4`

 

`H(x)=9x-6=0`

`-> 9x=0+6`

`-> 9x=6`

`-> x= 6 \div 9`

`-> x=`\(\dfrac{2}{3}\)

Vậy, nghiệm của đa thức là `x=`\(\dfrac{2}{3}\)

2 tháng 5 2018

a)

\(A\left(x\right)=3x^3+3x^2+2x-1\)

Bậc của A(x) là 3

Hệ số tự do A(x) là -1

Hệ số cao nhất của A(x) là 3

Tại A(-2)

\(A=3.\left(-2\right)^3+3.\left(-2\right)^2+2.\left(-2\right)-1\)

\(=-17\)

b)

\(B\left(x\right)=5x^4+6x-2x^2+4-5x^4-5x\)

\(=\left(5x^4-5x^4\right)+\left(-2x^2\right)+\left(6x-5x\right)+4\)

\(=-2x^2+x+4\)

c)

\(A\left(x\right)-B\left(x\right)=3x^3+3x^2+2x-1-\left(-2x^2+x+4\right)\)

                              \(=3x^3+3x^2+2x-1+2x^2-x-4\)

                              \(=3x^3+\left(3x^2+2x^2\right)+\left(2x-x\right)+\left(-1-4\right)\)

                              \(=3x^3+5x^2+x-5\)

d)

\(C\left(x\right)-2.\left(-2x^2+x+4\right)=3x^3+3x^2+2x-1\)

\(C\left(x\right)=3x^3+3x^2+2x-1+2.\left(-2x^2+x+4\right)\)

\(C\left(x\right)=3x^3+3x^2+2x-1-4x^2+2x+8\)

\(C\left(x\right)=3x^3+\left(3x^2-4x^2\right)+\left(2x+2x\right)+\left(-1+8\right)\)

\(C\left(x\right)=3x^3-x^2+4x+7\)

chúc bạn học giỏi

             

Bài 1 . cho hai đa thức: P(x) = 4x4 - 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4a. Tính P(x) + Q(x);b. Tính P(x) - Q(x).Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6a. Tính M(2) b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)c. Tìm nghiệm của đa thức A(x)Bài 3. Tìm nghiệm của các đa thức sau:a. 2x - 8                    b. 2x + 7                     c. 4 - x2     ...
Đọc tiếp

Bài 1 . cho hai đa thức: P(x) = 4x- 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4

a. Tính P(x) + Q(x);

b. Tính P(x) - Q(x).

Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6

a. Tính M(2) 

b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)

c. Tìm nghiệm của đa thức A(x)

Bài 3. Tìm nghiệm của các đa thức sau:

a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 

e. 2x- 6                   f. x(x - 1)                    g. x + 2x                  h. x( x + 2 )

Bài 4. cho hai đa thức: f(x) = 2x+ 3x- x + 1 - x2 - x4 - 6x3

                                     g(x) = 10x3 + 3 - x4 - 4x3 + 4x - 2x2

a. Thu gọn đa thức: f(x), g(x) và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến.

b. Tính h(x) = f(x) + g(x); K(x) = f(x) - g(x)

c. Tìm nghiệm của đa thức h(x)

Bài 5. Tìm nghiệm của các đa thức:

a. 9 - 3x                b. -3x + 4                 c. x- 9                   d. 9x- 4

e. x2 - 2                f. x( x - 2 )                g. x2 - 2x                  h. x(x2 + 1 )

1

Tách ra, dài quá mn đọc là mất hứng làm đó.

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

ko bt làm=))