K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2020
https://i.imgur.com/A1Bw3lC.jpg
21 tháng 8 2019

\(A=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\)\(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\right)\)\(:\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\frac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(:\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(.\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}+1}.\frac{5\sqrt{x}}{2\sqrt{x}+3}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)

\(A\in Z\Leftrightarrow\frac{5\sqrt{x}}{2\sqrt{x}+1}\in Z\Leftrightarrow\frac{10\sqrt{x}}{2\sqrt{x}+1}\in Z\)

\(\Rightarrow\frac{10\sqrt{x}+5-5}{2\sqrt{x}+1}\in Z\Leftrightarrow5-\frac{5}{2\sqrt{x}+1}\in Z\)

\(\Rightarrow\frac{5}{2\sqrt{x}+1}\in Z\Rightarrow2\sqrt{x}+1\inƯ_5\)

Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)

Nhưng \(2\sqrt{x}+1\ge1\)

\(\Rightarrow\orbr{\begin{cases}2\sqrt{x}+1=1\\2\sqrt{x}+1=5\end{cases}\Rightarrow\orbr{\begin{cases}2\sqrt{x}=0\\2\sqrt{x}=4\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

Vậy \(x\in\left\{0;4\right\}\)

17 tháng 5 2019

Hỏi đáp Toán

18 tháng 5 2019

chữ đẹp vcl

NV
15 tháng 5 2019

\(P=\frac{B}{A}=\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)}=\frac{3\sqrt{x}}{\sqrt{x}-2}\)

Để \(\left|P\right|>P\Rightarrow P< 0\)

\(\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}-2}< 0\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

\(x\) nguyên \(\Rightarrow x=\left\{2;3\right\}\)

NV
16 tháng 6 2020

\(A=1-cos^2x+2cosx+1=3-\left(cosx-1\right)^2\le3\)

\(A_{max}=3\) khi \(cosx=1\)

\(B=1-sin^2x-2sin^2x-3=-1-\left(sinx+1\right)^2\le-1\)

\(B_{max}=-1\) khi \(sinx=-1\)

\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{2}-1\right)}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{2}}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{4}-1\right)}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{4}}}=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{8}-1\right)}=\sqrt{cos^2\frac{x}{8}}=cos\frac{x}{8}\)

\(B=\sqrt{2+\sqrt{2+\sqrt{2+2\left(2cos^2\frac{a}{2}-1\right)}}}\)

\(=\sqrt{2+\sqrt{2+\sqrt{4cos^2\frac{a}{2}}}}=\sqrt{2+\sqrt{2+2cos\frac{a}{2}}}\)

\(=\sqrt{2+\sqrt{2+2\left(cos^2\frac{a}{4}-1\right)}}=\sqrt{2+\sqrt{4cos^2\frac{a}{4}}}\)

\(=\sqrt{2+2cos\frac{a}{4}}=\sqrt{2+2\left(2cos^2\frac{a}{8}-1\right)}=2cos\frac{a}{8}\)

24 tháng 3 2020
https://i.imgur.com/FoJaenF.jpg
25 tháng 3 2020

cảm ơn bạn