Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét f(x) = 2x - 4 = 0
=> 2x = 4
=> x = 2
xét g(x) = x^2 - ax + 2 = 0
=> g(2) = 2^2 - 2a + 2 = 0
=>6 - 2a = 0
=> 2a = 6
=> a = 3
vậy a = 3 để nghiệm của f(x) đồng thời là nghiệm của g(x)
Ta có f(x)=0
<=> 2x-4=0
<=> 2x=4
<=> x=2
Vậy x=2 là nghiệm của f(x)
Mà nghiệm của f(x) cũng là nghiệm của g(x)
=> g(2)=0
<=> 2^2-2a+2=0
<=>2a=6
<=>a=3
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
a. f(x) = g(x) - h(x)
= 4x2 + 3x + 1 - (3x2 - 2x - 3)
= 4x2 + 3x + 1 - 3x2 + 2x + 3
= (4x2 - 3x2) + (3x + 2x) + (1 + 3)
= x2 + 5x + 4
b. Xét đa thức f(x) = x2 + 5x + 4
f(-4) = (-4)2 + 5 . (-4) + 4 = 0
Vậy x = -4 là nghiệm của f(x)
c. Cho f(x) = 0
\(\Rightarrow\) x2 + 5x + 4 = 0
\(\Rightarrow\) x2 + x + 4x + 4 = 0
\(\Rightarrow\) x (x + 1) + 4 (x + 1) = 0
\(\Rightarrow\) (x + 1) (x + 4) = 0
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Vậy f(x) có tập nghiệm là \(x\in\left\{-4;-1\right\}\).
f(x)=x^2+5x+4 (x+1)(x+4)=0 \(\hept{\begin{cases}x=-1\\x=-4\end{cases}}\) s={-1,-4}
a, \(g\left(x\right)-h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x-3\right)\)
\(=4x^2+3x+1-3x^2+2x+3=x^2+5x+4\)
b, \(f\left(-4\right)=\left(-4\right)^2+5.\left(-4\right)+4=16+\left(-20\right)+4=0\)
Nên -4 là nghiệm của f(x)
c, \(f\left(x\right)=0\Rightarrow x^2+5x+4=0\)
\(\Rightarrow x\left(x+1\right)+4\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Vậy các nghiệm của f(x) là \(x\in\left\{-1;-4\right\}\)
THANKSSS