K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAOM và ΔBOM có

OA=OB

OM chung

MA=MB

Do đó:ΔAOM=ΔBOM

b: Ta có: ΔOAB cân tại O

mà OM là đường trung tuyến

nên OM\(\perp\)AB

mà d\(\perp\)OM

nên d//AB

8 tháng 12 2016

a, Xét tam giác AOB và tg BOM có:

AO=OB  (gt)

AM=MB ( M là trung điểm của AB )

Chung cạnh OM

=> tg AOB = tg BOM ( c.c.c )

b, Vì tg AOB = tg BOM ( câu a )

=> góc AMO = góc BMO ( 2 góc tương ứng )

Mà góc AMO + góc BMO = 180o ( 2 góc kề bù )

=> Góc AMO=góc BMO=90o

=> OM vuông góc với AB

Mà Od vuông góc với OM

=> Od song song với AB.

THẾ LÀ XONG RỒI ĐẤY ! ^^ BẠN CẦN VẼ HÌNH KO ?

8 tháng 12 2016

Cái đầu tiên là AOM chứ ko phải là AOB nha!

18 tháng 8 2020

x O y z A B M

a) xét \(\Delta AOM\)và \(\Delta BOM\)

\(AO=BO\left(gt\right);\widehat{AOM}=\widehat{BOM}\left(gt\right);\)OM là cạnh chung

=>\(\Delta AOM\)=\(\Delta BOM\)(c-g-c)

=> AM = BM (hai cạnh tương ứng )

=> M là trung điểm của AB

b) vì AO = BO

=> \(\Delta ABO\)là tam giác cân

vì OM là phân giác của AB 

=> OM vừa là đường cao của tam giác ABC

=> \(OM\perp AB\left(đpcm\right)\)

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
16 tháng 7 2021

Xét tam giác AOE và tam giác BOE 

có: AOE=BOE ( BE là tia P.g) 

     OE chung 

      OA=OB ( gt ) 

=> tam giác AOE=BOE (c-g-c)

b) Vì tam giác AOE=BOE (cma) => AE=EB ( 2 cạnh tương ứng ) 

Xét tam giác AEK và BEO có:

OE=EK  (gt) 

AEK=BEO ( đối đỉnh ) 

AE=EB ( cmt ) 

=> Tam giác AEK =BEO (c-g-c)

=> AK=OB ( 2 cạnh tương ứng )

c) Từ tam giác AEK= BEO (cmb) => AKE = BOE ( 2 góc tương ứng ) hay MKE=NOE 

Xét tam giác MKE và NOE có : 

MKE=NOE ( cmt) 

MK=ON ( AK=OB ; M , N là trung điểm mỗi đg ) 

EK=OE (gt)

=> Tam giác MKE = MOE (c-g-c)

=> EM=EN ( 2 cạnh tương ứng )