Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x O y A z B M H K
Giải:
a) Xét \(\Delta MOA,\Delta MOB\) có:
\(\widehat{AOM}=\widehat{OMB}\) ( cặp góc so le trong và AM // Oy )
OM: cạnh chung
\(\widehat{AMO}=\widehat{BOM}\) ( cặp góc so le trong và AM // Oy )
\(\Rightarrow\Delta MOA=\Delta MOB\left(g-c-g\right)\)
\(\Rightarrow OA=OB\) ( cạnh t/ứng )
\(\Rightarrow MA=MB\) ( cạnh t/ứng )
b) Xét \(\Delta HOM\) có: \(\widehat{HOM}+\widehat{HMO}=90^o\) ( do \(\widehat{H}=90^o\) )
Xét \(\Delta KOM\) có: \(\widehat{MOK}+\widehat{OMK}=90^o\) ( do \(\widehat{K}=90^o\) )
Mà \(\widehat{HOM}=\widehat{MOK}\left(=\frac{1}{2}\widehat{O}\right)\)
\(\Rightarrow\widehat{HMO}=\widehat{OMK}\)
Xét \(\Delta HOM,\Delta KOM\) có:
\(\widehat{HOM}=\widehat{KOM}\left(=\frac{1}{2}\widehat{O}\right)\)
OM: cạnh chung
\(\widehat{HMO}=\widehat{OMK}\) ( cmt )
\(\Rightarrow\Delta HOM=\Delta KOM\left(g-c-g\right)\)
\(\Rightarrow MH=MK\) ( cạnh t/ứng )
Vậy...
`a,` Gọi `a` giao `b` là `O'`.
Ta có: `hat(OAB) + hat(ABO') + hat(BO'A) + hat(AOB) = 360^o`
`<=> 90^o + 90^o + 90^o + hat(AO'B) =360^o`
`<=> hat(AO'B) = 90^o => a` vuông góc `b`.
`b,` Do `hat(xOy) = 90^o` nên `A, O, B` thẳng hàng.
Vì `hat(aAB) + hat(bBA) = 90^o + 90^o = 180^o` nên `a////b`.
b: a vuông góc với xy
b vuông góc với xy
Do đó: a//b
a: OB vuông góc với OA
a vuông góc với OA
Do đó: OB//a
mà OB vuông góc với b
nên a vuông góc với b