K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 12 2021

Lời giải:
a)

Xét tam giác $OMA$ và $OMB$ có:

$\widehat{OAM}=\widehat{OBM}=90^0$

$OM$ chung

$\widehat{O_1}=\widehat{O_2}$ (do $Oz$ là tia phân giác $\widehat{xOy$)

$\Rightarrow \triangle OMA=\triangle OMB$ (ch-gn)

b)

Từ tam giác bằng nhau ở phần $a$ suy ra $\widehat{OMA}=\widehat{OMB}$

Lại có: $\widehat{AMD}=\widehat{BMC}$ (đối đỉnh)

$\Rightarrow \widehat{OMA}+\widehat{AMD}=\widehat{OMB}+\widehat{BMC}$

$\Leftrightarrow \widehat{OMD}=\widehat{OMC}$

Xét tam giác $OMD$ và $OMC$ có:
$OM$ chung

$\widehat{O_1}=\widehat{O_2}$

$\widehat{OMD}=\widehat{OMC}$

$\Rightarrow \triangle OMD=\triangle OMC$ (g.c.g)

$\Rightarrow OD=OC$

c)

Kéo dài $OM$ cắt $CD$ tại $K$

Xét tam giác $DOK$ và $COK$ có:

$\widehat{O_1}=\widehat{O_2}$

$OD=OC$ (cmt)

$OK$ chung

$\Rightarrow \triangle DOK=\triangle COK$ (c.g.c)

$\Rightarrow \widehat{OKD}=\widehat{OKC}$

Mà $\widehat{OKD}+\widehat{OKC}=180^0$

$\Rightarrow \widehat{OKD}=\widehat{OKC}=90^0$

$\Rightarrow OK\perp CD$ hay $OM\perp CD$

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Hình vẽ:
Chương II : Tam giác

11 tháng 12 2020

undefined

Ta có MA vuông với Ox  => OAM = 180*-90*=90* MB vuông với Oy => OBM = 180*-90*=90* => OAM=OBM Vì Oz là phân giác của góc O nên AOM = MOB +) Xét tam giác OAM và tam giác OBM OAM=OBM AOM=MOB OM là cạnh chung => tam giác OAM=tam giác OBM

11 tháng 12 2020

undefined hình phần b nha mik chưa đủ thời gian làm được

19 tháng 11 2017

Bạn vẽ hình rồi chụp lên đc ko

19 tháng 11 2017

bài này dễ à bạn vẽ thê đường phụ một tí là ok cmnr 

O A B x y C D I

Xét \(\Delta OAI\)\(\Delta OBI\). Có:

OI cạnh chung

góc AOI = góc BOI ( Oz tia phân giác góc xOy)

góc OAI = góc OBI (=\(90^0\))

\(\Rightarrow\Delta OAI=\Delta OBI\left(g.c.g\right)\)

câu b đợi mk chụp ảnh lên cho

câu b, c đây

28 tháng 11 2016

x O y A z B M H K

Giải:
a) Xét \(\Delta MOA,\Delta MOB\) có:

\(\widehat{AOM}=\widehat{OMB}\) ( cặp góc so le trong và AM // Oy )

OM: cạnh chung

\(\widehat{AMO}=\widehat{BOM}\) ( cặp góc so le trong và AM // Oy )

\(\Rightarrow\Delta MOA=\Delta MOB\left(g-c-g\right)\)

\(\Rightarrow OA=OB\) ( cạnh t/ứng )

\(\Rightarrow MA=MB\) ( cạnh t/ứng )

b) Xét \(\Delta HOM\) có: \(\widehat{HOM}+\widehat{HMO}=90^o\) ( do \(\widehat{H}=90^o\) )

Xét \(\Delta KOM\) có: \(\widehat{MOK}+\widehat{OMK}=90^o\) ( do \(\widehat{K}=90^o\) )

\(\widehat{HOM}=\widehat{MOK}\left(=\frac{1}{2}\widehat{O}\right)\)

\(\Rightarrow\widehat{HMO}=\widehat{OMK}\)

Xét \(\Delta HOM,\Delta KOM\) có:

\(\widehat{HOM}=\widehat{KOM}\left(=\frac{1}{2}\widehat{O}\right)\)

OM: cạnh chung

\(\widehat{HMO}=\widehat{OMK}\) ( cmt )

\(\Rightarrow\Delta HOM=\Delta KOM\left(g-c-g\right)\)

\(\Rightarrow MH=MK\) ( cạnh t/ứng )

Vậy...