Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm đc mỗi phần a thôi ạ
Xét tam giác OAB có AB//CD
=> AO/OC = OB/OD = AB/DC => 12/OC = 9/3 =18/DC (Hệ quả định lý TA-LÉT )
=> OC=4cm , DC=6cm
~Chúc học tốt~
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
câu 1
a) xét tam giác OAM và tam giác OBM có:
OB=OA(gt)
góc BOM= góc MOA(Ot là tia phân giác của góc xOy)
OM:cạnh chung
⇒tam giác OAM= tam giác OBM(c.g.c)
b)vì tam giác OAM= tam giác OBM(câu a)
⇒AM=BM(2 cạnh tương ứng)
⇒góc OMB= góc OMA(2 góc tương ứng)
Mà hóc OMB+góc OMA=180o(kề bù)
⇒góc OMB=góc OMA=180o:2=90o
⇒OM vuông góc với AB
c)vì MA=MB(câu b)
Mà OM vuông góc với AB(câu b)
⇒OM là đường trung trực của AB
d)xét tam giác NBM và tam giác NAM có
AM=BM(câu b)
góc BMN= góc AMN(=90o)
MN:cạnh chung
⇒tam giác NBM= tam giác NAM(c.g.c)
⇒NA=NB(2 cạnh tướng ứng)
a/CD//AB, theo Thales suy ra \(\frac{OC}{OA}=\frac{OD}{OB}\Rightarrow OC=\frac{OA.OD}{OB}=\frac{12.3}{9}=4\)
Lại có CD//AB nên \(\frac{CD}{AB}=\frac{OD}{OB}\Rightarrow CD=\frac{AB.OD}{OB}=\frac{18.3}{9}=6\)
b/CD//AB nên \(\frac{FD}{AF}=\frac{CD}{AB}=\frac{6}{18}=\frac{1}{3}\)
\(\frac{AF}{FD}-1=\frac{AF-FD}{FD}=\frac{AD}{FD}=3-1=2\).Lật ngược tỉ số lại sẽ đc