K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2020

Làm đc mỗi phần a thôi ạ

Xét tam giác OAB có AB//CD

=> AO/OC = OB/OD = AB/DC => 12/OC = 9/3 =18/DC (Hệ quả định lý TA-LÉT )

=> OC=4cm , DC=6cm

~Chúc học tốt~

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

20 tháng 2 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AO\OC=OB\OD=AB\DC⇒12\OC=9\3=18\DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FD\AD=FC\CB⇒FD.BC=FC.AD

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMRa) tam giác OAM = tam giác OBMb)AM = BM; OM \(\perp\)ABc) OM là đg trung trực của ABd) Trên tia Ot lấy điểm N. CMR: NA = NB2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMRa) AB // KE             b) góc ABC = góc KEC; BC...
Đọc tiếp

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMR

a) tam giác OAM = tam giác OBM

b)AM = BM; OM \(\perp\)AB

c) OM là đg trung trực của AB

d) Trên tia Ot lấy điểm N. CMR: NA = NB

2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMR

a) AB // KE             b) góc ABC = góc KEC; BC = CE

3.Cho góc nhọn xOy. Trên tia Ox lấy 2 điểm A, C. Trên tia Oy lấy 2 điểm B,D sao cho OA = OB, AC = BD

a)CMR: AD = BC

b) Gọi E là giao điểm AD và BC. CMR tam giác EAC = tam giác EBD

c) CMR: OE là phân giác của góc xOy, OE \(\perp\)CD

4.Cho tam giác ABC có góc B = 90, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA

a) Tính góc BCE                                             b) CMR BE//AC

1
29 tháng 12 2018

câu 1

a) xét tam giác OAM và tam giác OBM có:

OB=OA(gt)

góc BOM= góc MOA(Ot là tia phân giác của góc xOy)

OM:cạnh chung

tam giác OAM= tam giác OBM(c.g.c)

b)vì tam giác OAM= tam giác OBM(câu a)

AM=BM(2 cạnh tương ứng)

góc OMB= góc OMA(2 góc tương ứng)

Mà hóc OMB+góc OMA=180o(kề bù)

góc OMB=góc OMA=180o:2=90o

OM vuông góc với AB

c)vì MA=MB(câu b)

Mà OM vuông góc với AB(câu b)

OM là đường trung trực của AB

d)xét tam giác NBM và tam giác NAM có

AM=BM(câu b)

góc BMN= góc AMN(=90o)

MN:cạnh chung

tam giác NBM= tam giác NAM(c.g.c)

NA=NB(2 cạnh tướng ứng)

25 tháng 2 2020

a/CD//AB, theo Thales suy ra \(\frac{OC}{OA}=\frac{OD}{OB}\Rightarrow OC=\frac{OA.OD}{OB}=\frac{12.3}{9}=4\)

Lại có CD//AB nên \(\frac{CD}{AB}=\frac{OD}{OB}\Rightarrow CD=\frac{AB.OD}{OB}=\frac{18.3}{9}=6\)

b/CD//AB nên \(\frac{FD}{AF}=\frac{CD}{AB}=\frac{6}{18}=\frac{1}{3}\)

\(\frac{AF}{FD}-1=\frac{AF-FD}{FD}=\frac{AD}{FD}=3-1=2\).Lật ngược tỉ số lại sẽ đc