Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(sin^2a+cos^2a\right)\left(sin^4a-sin^2acos^2a+cos^4a\right)+3sin^2acos^2a\)
A = \(sin^4+2sin^2acos^2a+cos^4a=\left(sin^2a+cos^2a\right)^2=1\)
b: Xét ΔADC vuông tại D và ΔBEC vuông tại E có
\(\widehat{C}\) chung
Do đó: ΔADC\(\sim\)ΔBEC
A = \(\left(sin^2a+cos^2a\right)^2=1^2=1\)
D = \(sin^2\left(sin^2B+cos^2B\right)+cos^2a=sin^2a+cos^2a=1\)
D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)
\(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)
\(VT=\dfrac{sin^2x+\left(1+cosx\right)^2}{sinx\left(1+cosx\right)}\)
\(=\dfrac{sin^2x+1+cos^2x+2cosx}{sinx\left(1+cosx\right)}\)
\(=\dfrac{2\left(cosx+1\right)}{sinx\left(cosx+1\right)}=\dfrac{2}{sinx}\)
Bài 1 :
\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)