Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1+2a}{1+a}+\frac{1+2b}{1+b}+\frac{1+2c}{1+c}\)
\(=2-\frac{1}{1+a}+2-\frac{1}{1+b}+2-\frac{1}{1+c}=6-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)
Xét \(f\left(x\right)=0\)có 3 nghiệm a; b ; c
Theo định lí viet ta có:
\(a+b+c=0\)
\(ab+bc+ac=-3\)
\(abc=-1\)
=> \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{1+bc+b+c+1+ac+a+c+1+ab+a+b}{1+ab+a+b+c+abc+ab+ac}\)
\(=\frac{3+\left(ab+ac+bc\right)+2\left(a+b+c\right)}{1+\left(ab+ac+bc\right)+\left(a+b+c\right)+abc}=\frac{3-3+0}{1-3+0-1}=0\)
=> \(A=\)\(6-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)= 6 - 0 = 6.
Hai BĐT đều có dấu "=" xảy ra
a/ \(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)
\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^2+xy+y^2\right)\left(x-y\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y\)
b/ Áp dụng câu a:
\(VT\le\sum\frac{a^2b^2}{a^3b^3\left(a+b\right)+a^2b^2}=\sum\frac{1}{ab\left(a+b\right)+1}=\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)