K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

\(P\left(x\right)=3x^2-\left[3f\left(x\right)+1\right]x+3-f\left(x\right)=0\left(1\right)\)

Phương trình (1) có nghiệm thuộc \(\left(0;\frac{2}{3}\right)\) khi:

\(\hept{\begin{cases}\Delta=9f^2\left(x\right)+18f\left(x\right)-35\ge0\\P\left(0\right)=3-f\left(x\right)>0\\P\left(\frac{2}{3}\right)=\frac{11}{3}-3f\left(x\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}f\left(x\right)\le\frac{-3-2\sqrt{11}}{3}\left(h\right)f\left(x\right)\ge\frac{-3+2\sqrt{11}}{3}\\f\left(x\right)< 3\\f\left(x\right)< \frac{11}{9}\end{cases}}}\)

\(\Rightarrow f\left(x\right)\in(-\infty;\frac{-3-2\sqrt{11}}{3}]\)U\([\frac{-3+2\sqrt{11}}{3};\frac{11}{9})\)

Dễ thấy \(f\left(x\right)>0\forall x\in\left(0;\frac{2}{3}\right)\). Suy ra \(\frac{-3+2\sqrt{11}}{3}\le f\left(x\right)< \frac{11}{9}\)

Vậy \(minf\left(x\right)=\frac{-3+2\sqrt{11}}{3}\), đạt được khi \(x=\frac{-1+\sqrt{11}}{3}.\)

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{\left(x^2-3x\right)^2-2\left(x^2-3x\right)-8}{x^2-3x}=\frac{\left(x^2-3x-4\right)\left(x^2-3x+2\right)}{x^2-3x}\)

\(f\left(x\right)=\frac{\left(x+1\right)\left(x-1\right)\left(x-2\right)\left(x-4\right)}{x\left(x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{0;3\right\}\)

\(f\left(x\right)=0\Rightarrow x=\left\{-1;1;2;4\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -1\\0< x< 1\\2< x< 3\\x>4\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}-1< x< 0\\1< x< 2\\3< x< 4\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{2x-2\left(x+1\right)-x\left(x+1\right)}{2x\left(x+1\right)}=\frac{-x^2-x-2}{2x\left(x+1\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{-1;0\right\}\)

\(f\left(x\right)>0\Rightarrow-1< x< 0\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -1\\x>0\end{matrix}\right.\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{x^2-4x+3+\left(x-1\right)\left(3-2x\right)}{3-2x}=\frac{-x^2+x}{3-2x}=\frac{x\left(1-x\right)}{3-2x}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\frac{3}{2}\)

\(f\left(x\right)=0\Rightarrow x=\left\{0;1\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}0< x< 1\\x>\frac{3}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< 0\\1< x< \frac{3}{2}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(2-x\right)\left(3x+4\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\pm\sqrt{3};-\frac{4}{3};2\right\}\)

\(f\left(x\right)=0\Rightarrow x=\pm1\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}-\sqrt{3}< x< -\frac{4}{3}\\-1< x< 1\\\sqrt{3}< x< 2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -\sqrt{3}\\-\frac{4}{3}< x< -1\\1< x< \sqrt{3}\\x>2\end{matrix}\right.\)

24 tháng 2 2020

giúp mình với mình đang cần gấp

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)

10 tháng 3 2020

undefined

10 tháng 3 2020

undefined

21 tháng 11 2019

Nguyễn Việt Lâm

21 tháng 11 2019

bổ sung đề

với f không giảm

tính f\(\left(\frac{1}{n}\right)\) với n∈\(\left\{1;2;3;....;20\right\}\)