K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

Đa thức bậc 3 có dạng : \(f\left(x\right)=ax^3+bx^2+cx+d\)

Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=Q\left(x\right).\left(x-1\right)+6\\f\left(x\right)=Q\left(x\right).\left(x-2\right)+6\\f\left(x\right)=Q\left(x\right).\left(x-5\right)+6\\f\left(-1\right)=-18\end{matrix}\right.\)

Theo bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}a+b+c+d=6\\8a+4b+2c+d=6\\125a+25b+5c+d=6\\-a+b-c+d=-18\end{matrix}\right.\)

Giải hệ phương trình ta tìm được :

\(\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b=-\dfrac{16}{3}\\c=\dfrac{34}{3}\\d=-\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)=\dfrac{2}{3}x^3-\dfrac{16}{3}x^2+\dfrac{34}{3}x-\dfrac{2}{3}\)

\(\Rightarrow f\left(2005\right)=\dfrac{2}{3}.2005^3-\dfrac{16}{3}.2005^2+\dfrac{34}{3}.2005-\dfrac{2}{3}=5352016006\)

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

7 tháng 11 2020

Đặt F(x) = ax3 + bx2 + cx + d ( a ≠ 0 )

F(x) chia ( x - 1 ) ; ( x - 2 ) ; ( x - 3 ) đều dư 6

=> F(x) - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )

<=> ax3 + bx2 + cx + d - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )

Đến đây ta áp dụng định lí Bézoute :

F(x) - 6 chia hết cho x - 1 <=> F(1) = 0

<=> a + b + c + d - 6 = 0

<=> a + b + c + d = 6 (1)

F(x) - 6 chia hết cho x - 2 <=> F(2) = 0

<=> 8a + 4b + 2c + d - 6 = 0

<=> 8a + 4b + 2c + d = 6 (2)

F(x) - 6 chia hết cho x - 3 <=> F(3) = 0

<=> 27a + 9b + 3c + d - 6 = 0

<=> 27a + 9b + 3c + d = 6 (3)

F(-1) = -18

<=> -a + b - c + d = -18 (4)

Từ (1), (2), (3), (4) => \(\hept{\begin{cases}a+b+c+d=8a+4b+2c+d=27a+9b+3c+d=6\\-a+b-c+d=-18\end{cases}}\)

< Để giải hệ này xài máy 580VN X, Menu -> 9 -> 1 -> 4 >

Giải hệ ta được a = 1 ; b = -6 ; c = 11 ; d = 0

=> F(x) = x3 - 6x2 + 11x

15 tháng 12 2018

\(x^3-7x-6=0\)

\(x^3-3x^2+3x^2+2x-9x-6=0\)

\(x^2.\left(x-3\right)+3x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x+3\right).\left(x^2+3x+2\right)=0\Rightarrow\left(x-3\right).\left(x^2+3x+x+2\right)=0\)

\(\Rightarrow\left(x-3\right).\left(x+1\right).\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\text{hoặc }x=-2\)

22 tháng 10 2016

Làm lại từ đầu.

Áp dụng định lý Bêdu có \(f\left(2\right)=2,25;f\left(3\right)=1,67\)

Đặt \(f\left(x\right)=\left(x^2-5x+6\right)\left(1-x^2\right)+Q\left(x\right)\)

\(1-x^2\)có bậc không quá 2 nên đặt \(Q\left(x\right)=a.x+b\)

\(\Rightarrow f\left(x\right)=-x^4+5x^3-5x^2-5x+a.x+b+6\)

Có :

\(f\left(2\right)=0+2a+b=2a+b=2,25\)

\(f\left(3\right)=0+3a+b=3a+b=1,67\)

\(\Rightarrow\left(3a+b\right)-\left(2a+b\right)=a=-0,58\)

\(b=3,41\)

\(\Rightarrow f\left(x\right)=-x^4+5x^3-5x^2-5,58.x+9,41\)

 

22 tháng 10 2016

Áp dụng định lý Bêdu có \(f\left(2\right)=2,25\)

\(f\left(3\right)=1,67\)

Đặt \(f\left(x\right)=\left(x^2-5x+6\right)\left(1-x^2\right)+Q\left(x\right)\)

\(1-x^2\)có bậc không quá 2 nên \(Q\left(x\right)\)có bậc không quá 1, tức ta đặt \(Q\left(x\right)=ax+b\)

\(f\left(x\right)\Rightarrow=x^2-x^4-5x+5x^3+6-x^2+a.x+b\)

\(=-x^4+5x^3-5x+a.x+b+6\)

Có:

\(f\left(2\right)=2,25\)

\(\Rightarrow-2^4+5.2^3-5.2+a.2+b+6=2,25\)

\(20+2a+b=2,25\)

\(f\left(3\right)=1,67\)

\(\Rightarrow-3^4+5.3^3-5.3+a.3+b+6=1,67\)

\(45+3a+b=1,67\)

\(\Rightarrow\left(45+3a+b\right)-\left(30+2a+b\right)=1,67-2,25\)

\(15+a=-0,58\)

\(a=-15,58\)

\(20+2a+b=20+2.\left(-15,58\right)+b=2,25\)

\(\Rightarrow b=13,41\)

\(\Rightarrow f\left(x\right)==-x^4+5x^3-10,58x+19,41\)

Vậy...