Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức bậc 3 có dạng : \(f\left(x\right)=ax^3+bx^2+cx+d\)
Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=Q\left(x\right).\left(x-1\right)+6\\f\left(x\right)=Q\left(x\right).\left(x-2\right)+6\\f\left(x\right)=Q\left(x\right).\left(x-5\right)+6\\f\left(-1\right)=-18\end{matrix}\right.\)
Theo bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}a+b+c+d=6\\8a+4b+2c+d=6\\125a+25b+5c+d=6\\-a+b-c+d=-18\end{matrix}\right.\)
Giải hệ phương trình ta tìm được :
\(\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b=-\dfrac{16}{3}\\c=\dfrac{34}{3}\\d=-\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=\dfrac{2}{3}x^3-\dfrac{16}{3}x^2+\dfrac{34}{3}x-\dfrac{2}{3}\)
\(\Rightarrow f\left(2005\right)=\dfrac{2}{3}.2005^3-\dfrac{16}{3}.2005^2+\dfrac{34}{3}.2005-\dfrac{2}{3}=5352016006\)
Vì f(x) chia cho x2-5x+6 được thương là 1-x2 và còn dư nên f(x) có bậc 4 và đa thức dư bậc cao nhất là 1.
Gọi f(x)=(x-2)(x-3)(1-x2)+ax+b
Ta có f(2)=2 vaf(3)=7 thay vào tìm đc a và b suy ra đa thức f(x) cần tìm.
Giải giùm nha!!
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Đa thức thương bậc 2 => Đa thức dư có bậc cao nhất là 1
Giả sử đa thức dư là ax + b => f(x) = (x^2 - 5x + 6)(1-x^2) + ax + b = (x-2)(x-3)(1-x^2) + ax + b
Theo định lí Bezout nếu f(x) chia x-2 dư 2 thì khi x = 2 phần dư là ax + b = 2a+b = 2 (1)
Tương tự 3a+b = 7 (2)
(2) - (1) = a = 5 => b = -8
khi đó f(x) = (x^2 - 5x + 6)(1-x^2) + 5x - 8
Bạn khai triển ra...
Gọi thương của phép chia f(x) cho x+3 là A(x)
thương của phép chia f(x) cho x-2 là B(x)
Ta có: \(f\left(x\right)=\left(x+3\right).A\left(x\right)+1\) \(\Rightarrow\) \(f\left(-3\right)=1\)
\(f\left(x\right)=\left(x-2\right).B\left(x\right)+6\) \(f\left(2\right)=6\)
Gọi dư của phép chia f(x) cho x2 + x - 6 là ax + b
Ta có: \(f\left(x\right)=\left(x^2+x-6\right).2x+ax+b\)
\(\Leftrightarrow\)\(f\left(x\right)=\left(x-2\right)\left(x+3\right).2x+ax+b\)
Lần lượt thay \(x=2;\) \(x=-3\) ta có:
\(\hept{\begin{cases}f\left(2\right)=2a+b=6\\f\left(-3\right)=-3a+b=1\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}a=1\\b=4\end{cases}}\)
Vậy \(f\left(x\right)=\left(x^2+x-6\right).2x+x+4\)
\(=2x^3+2x^2-11x+4\)