Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(f(5)-f(4)=2012\)
\(\Leftrightarrow (a.5^3+b.5^2+c.5+d)-(a.4^3+b.4^2+c.4+d)=2012\)
\(\Leftrightarrow 61a+9b+c=2012\)
Do đó:
\(f(7)-f(2)=(a.7^3+b.7^2+c.7+d)-(a.2^3+b.2^2+c.2+d)\)
\(=335a+45b+5c=30a+5(61a+9b+c)\)
\(=30a+5.2012=5(6a+2012)\vdots 5\)
Mà \(f(7)-f(2)=30a+5.2012>5, \forall a\in\mathbb{Z}^+\). Do đó $f(7)-f(2)$ là hợp số (đpcm)
a) f(0) = c; f(0) nguyên => c nguyên (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị nguyên mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên
b) f(3) = 9a + 3b + c = (a+ b + c) + (4a + 2b) + 4a
Vì a+ b + c ; 4a + 2b; 4a đều có giá trị nguyên nên f(3) có giá trị nguyên
f(4) = 16a + 4b + c = (a+ b) + (9a + 3b + c) + 3. 2a
Vì a+ b; 9a + 3b + c; 2a đều nguyên nên f(4) có giá trị nguyên
f(5) = 25a + 5b + c = (16a + 4b + c) + (a+ b) + 4. 2a
Vì 16a + 4b + c ; a+ b; 2a đều có giá trị nguyên nên f(5) có giá trị nguyên
Lời giải:
a)
\(f(1)=a.1^2+b.1+c=a+b+c\)
\(f(2)=a.2^2+b.2+c=4a+2b+c\)
b)
\(f(-2)=a(-2)^2+b(-2)+c=4a-2b+c\)
Do đó:
\(f(1)+f(-2)=(a+b+c)+(4a-2b+c)=5a-b+2c=0\)
\(\Rightarrow f(-2)=-f(1)\)
\(\Rightarrow f(1)f(-2)=-f(1)^2\leq 0\)
c)
Với $a=1,b=2,c=3$ thì :
\(f(x)=x^2+2x+3=x(x+1)+(x+1)+2=(x+1)(x+1)+2\)
\(=(x+1)^2+2\)
Vì \((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow f(x)=(x+1)^2+2\geq 2>0\)
Vậy $f(x)\neq 0$
Do đó $f(x)$ không có nghiệm.
Ta có:
+) f(1) =4 => f(1)= a.1^2 + b.1 + c = a + b + c=4 (*)
+) f(-1)=8 => f(-1)=a.(-1)^2+b.(-1)+c=a - b + c = 8 (*)
Cộng 2 vế (*) với (**) ta được: a+b+c+a-b+c=4+8
=> 2a+2c=12
=> a+c=6
=> a=6-c
Thay a=6-c vào a-c=-4 ta đc: 6-c-c=-4 =>2c=6+4=10 =>c=5
=>a=6-5=1
=>b=4-5-1=-2
Vậy a,b,c lần lượt là 1;(-2);5
Mình ấn nhầm >_<
+)f(-1)=8 => f(-1)=a.(-1)^2+b.(-1)+c=a - b + c = 8 (**)
\(f\left(4\right)=a.4^2+b.4+c=16a+4b+c\)
\(f\left(4\right)=a.\left(-4\right)^2+b.\left(-4\right)+c=16a-4b+c\)
\(f\left(4\right)=f\left(-4\right)\Rightarrow16a+4b+c=16a-4b+c\\ \Rightarrow16a+4b+c-16a+4b-c=0\\ \Rightarrow8b=0\\ \Rightarrow b=0\)
Ta có: \(f\left(x\right)=ax^2+bx+c=ax^2+0x+c=ax^2+c\) (1)
\(f\left(-x\right)=a\left(-x\right)^2+b\left(-x\right)+c=ax^2+0\left(-x\right)+c=ax^2+c\) (2)
Từ (1), (2)\(\Rightarrow f\left(x\right)=f\left(-x\right)\)