K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 4 2016
f(x)= ax^3+4x(x^2-1)+8 = ax^3 + 4x^3 - 4x + 8 = (a + 4)x^3 - 4x + 8
g(x)= x^3 - 4x(bx+1) +c-3 = x^3 - 4bx^2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
NS
0
AH
Akai Haruma
Giáo viên
31 tháng 10 2024
Lời giải:
$f(x)=ax^3+4x^2+4$
$g(x)=x^3-4bx^2-4x-(c+3)$
Để $f(x)=g(x), \forall x$ thì:
\(\left\{\begin{matrix}\\
a=1\\
4=-4b\\
0=-4\\
4=-(c+3)\end{matrix}\right. (\text{vô lý})\)
Vậy không tồn tại $a,b,c$ thỏa mãn đề.
21 tháng 4 2017
ta có
f(x)= ax3 + 4x(x2 -x) - 4x +8
= ax3 - (4x - 4x(x2-x) ) +8
= ax3 - ( 4x(1-x2-x) ) +8
Dễ thấy nếu f(x)=g(x) thì a=1 ; 1-x2-x = bx-1 ; 8 = c- 3
=> a=1 ; 1-x(x-1) = bx+1 ; c=11
=> a=1 ; b= 1-x ; c=11
vậy .........