Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đổi hết thành ps rồi giải
gttđ > 0
cái này bn tự lm đc mà
cố lên
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
a)\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)
\(=\left(\frac{-1}{2}-\frac{3}{5}\right):\left(-3\right)+\frac{1}{6}:\left(-2\right)\)
\(=\frac{-11}{30}:\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)
\(=\frac{11}{30}+\frac{1}{3}+\frac{-1}{12}\)
\(=\frac{37}{60}\)
b)\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)
\(=\left(\frac{2}{25}-\frac{126}{125}\right):\frac{4}{7}:\left[\left(\frac{13}{4}-\frac{59}{9}\right).\frac{36}{17}\right]\)
\(=\frac{-116}{125}:\frac{4}{7}:\left[\frac{-119}{36}.\frac{36}{17}\right]\)
\(=\frac{-116}{125}:\frac{4}{7}:-7\)
\(=\frac{29}{125}\)
\(E=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(E=\frac{3.4.5...100}{2.3.4...99}\)
\(E=\frac{100}{2}\)
\(E=50\)
k cho mk nha
k cho mk nha