K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

Hình chữ nhật cơ sở có chiều dài là 6 và chiều rộng là 4 nên diện tích là 24.

Đáp án là C.

31 tháng 1 2017

Đáp án: C

4 x 2  + 9 y 2  = 36

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 3)

Elip có a 2  = 9 ⇒ a = 3, b 2  = 4 ⇒ b = 2

Hình chữ nhật cơ sở có hai cạnh là 2a = 6, 2b = 4. Do đó, diện tích hình chữ nhật cơ sở là: 6.4 = 24

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

24 tháng 1 2018

Đáp án D

5 tháng 12 2018

Ta có

Độ dài trục lớn ( chiều dài hình chữ nhật cơ sở ): 2a= 10 .

Độ dài trục nhỏ ( chiều rộng hình chữ nhật cơ sở : 2b= 6

Diện tích hình chữ nhật cơ sở là 2a. 2b= 10.6= 60 .

Chọn C.

9 tháng 4 2017

a, Phương trình chính tắc của (E) có dạng

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\) với 0<b<a

Ta có A(0;2) \(\in\left(E\right)\)<=>b=2

(E) có tiêu điểm F1\(\left(-\sqrt{5};0\right)\) => c=\(\sqrt{5}\)

Ta có \(a^2=b^2+c^2=4+5=9\)=>a=3

==> (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)

b, 2a = 6; 2b = 4; 2c = \(2\sqrt{5}\)=>\(\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}\)

c, S=4ab=24

25 tháng 4 2019

bạn có thể trình bày chi tiết bài làm giúp mình không ?

30 tháng 3 2017

a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10

b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6

c2 = a2 – b2 = 25 - 9 = 16 => c = 4

Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)

Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).

b)

4x2 + 9y2 = 1 <=> + = 1

a2= => a = => độ dài trục lớn 2a = 1

b2 = => b = => độ dài trục nhỏ 2b =

c2 = a2 – b2

= - = => c =

F1(- ; 0) và F2( ; 0)

A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).

c) Chia 2 vế của phương trình cho 36 ta được :

=> + = 1

Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)

=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)

A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng