K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

E = ( \(\dfrac{\sqrt{x}}{\sqrt{x-1}}\)- \(\dfrac{1}{x-\sqrt{x}}\)) : ( \(\dfrac{1}{\sqrt{x+1}}\)+\(\dfrac{2}{\sqrt{x-1}}\))

a) ta có ĐKXĐ của E là x \(\ne\) 1

x \(\ne\) 0

x \(\ne\) -1

b) ( \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)- \(\dfrac{\sqrt{1}}{x-\sqrt{x}}\)) : ( \(\dfrac{1}{\sqrt{x}+1}\)+\(\dfrac{2}{\sqrt{x}-1}\))

= (\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)- \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)) :(\(\dfrac{1}{\sqrt{x}+1}\)+ \(\dfrac{2}{x+1}\))

= ( \(\dfrac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)) : (\(\dfrac{1\left(x-1\right)+2\sqrt{x+1}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\))

= ( \(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)) : \(\dfrac{x-1+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\)

= \(\dfrac{1}{\sqrt{x}}\): \(\dfrac{\left(x-1\right)+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\)

= \(\dfrac{1}{\sqrt{x}}\). \(\dfrac{1}{2}\)

= \(\dfrac{1}{2\sqrt{x}}\)

15 tháng 11 2018

a) Để biểu thức E được xác định thì \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\9x-1\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x>0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)

b) \(E=\left(1-\dfrac{2\sqrt{x}}{3\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{9x-1}\right):\left(\dfrac{9\sqrt{x}+6}{3\sqrt{x}+1}-3\right)=\left[\dfrac{3\sqrt{x}+1-2\sqrt{x}}{3\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\dfrac{9\sqrt{x}+6-9\sqrt{x}-3}{3\sqrt{x}+1}\right)=\left[\dfrac{\sqrt{x}+1}{3\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\dfrac{3}{3\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{3\sqrt{x}+1}.\left(1+\dfrac{1}{3\sqrt{x}-1}\right).\dfrac{3\sqrt{x}+1}{3}=\dfrac{\sqrt{x}+1}{3\sqrt{x}+1}.\dfrac{3\sqrt{x}+1}{3}.\dfrac{3\sqrt{x}}{3\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

10 tháng 9 2017

1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)

\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)

\(=1+2\sqrt{2}+2-3\)

\(=2\sqrt{2}\)

10 tháng 9 2017

3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)

ĐKXĐ \(x>0,x\ne1\)

pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)

b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)

\(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)

\(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)

Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)

(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

b) Để P>0 thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}>0\)

mà \(\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\left(\sqrt{x}-1\right)>0\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để P>0 thì x>1

8 tháng 8 2017

hẹn ngày mai, giao hàng hôm nay, không lỡ hẹn nhé

a) ĐK: \(x\ne1\)

\(P=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1-\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{-2}\right)\)

\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{-2}\) \(=\dfrac{-\sqrt{x}-1}{2}\)

b) P=4

\(P=-4\Leftrightarrow\dfrac{-\sqrt{x}-1}{2}=-4\Leftrightarrow-\sqrt{x}-1=-8\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\left(N\right)\)

c) \(x=8-2\sqrt{15}\Rightarrow\sqrt{x}=\sqrt{5}-\sqrt{3}\)

Thay \(\sqrt{x}=\sqrt{5}-\sqrt{3}\) vào P, ta được:

\(P=\dfrac{-\sqrt{5}+\sqrt{3}-1}{2}\)

KL: a) ĐK: \(x\ne1\)

\(P=\dfrac{-\sqrt{x}-1}{2}\)

b) x= 81

c) \(P=\dfrac{-\sqrt{5}+\sqrt{3}-1}{2}\)

8 tháng 8 2017

kết quả không được đẹp cho lắm nhỉ....

8 tháng 8 2017

dưới mẫu của phân thức đầu tiên, là \(\sqrt{x+2}\) hay là \(\sqrt{x}+2\) ??

8 tháng 8 2017

rep nha, được thì, mai tôi giải cho . cảm ơn ạ!

2 tháng 11 2021

\(1,\\ a,E=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ b,E>0\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}>0\Leftrightarrow\sqrt{x}-1>0\left(\sqrt{x}>0\right)\\ \Leftrightarrow x>1\\ 2,\\ a,B=\dfrac{x-\sqrt{x}+\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}+1\right)\\ B=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,B=2\Leftrightarrow\sqrt{x}-1=2\left(\sqrt{x}+1\right)\\ \Leftrightarrow\sqrt{x}-1=2\sqrt{x}+2\\ \Leftrightarrow\sqrt{x}=-3\Leftrightarrow x\in\varnothing\)

10 tháng 12 2017

Bài 1:

\(a,E=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(b,E>0\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}>0\)

Mà: \(\sqrt{x}>0\\ \Rightarrow\sqrt{x}-1>0\\ \Leftrightarrow\sqrt{x}>1\\ \Leftrightarrow x>1\)

10 tháng 12 2017

Bài 2:

\(a,G=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{1-\sqrt{x}}-\dfrac{2\sqrt{x}}{x-1}\right)\left(\sqrt{x}+1\right)\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\left(\sqrt{x}+1\right)\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\left(\sqrt{x}+1\right)\\ =\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\left(\sqrt{x}+1\right)\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\\ =\sqrt{x}-1\)

17 tháng 10 2018

a) điều kiện xác định : \(x>0;x\ne1\)

ta có : \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x}{2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{x-1}\right)=-2\sqrt{x}\)

b) để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0< x< 9\)\(x\ne1\)

vậy ....

17 tháng 10 2018

Mysterious Person giúp mk

17 tháng 10 2018

Đk: x >0 ; x khác 1

sau khi rút gọn ra -2\(\sqrt{x}\)

b, 9>x>0

20 tháng 10 2022

a: ĐKXĐ: x>0; x<>1

\(A=\dfrac{x-1}{2\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)-\sqrt{x}\left(x+2\sqrt{x}+1\right)}{x-1}\)

\(=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1-x-2\sqrt{x}-1\right)}{2\sqrt{x}}=\dfrac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)

b: Để A>-6 thì -2 căn x>-6

=>2 căn x<6

=>0<x<9