Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=-4\) vào pt elip ta được:
\(\frac{y^2}{9}=1-\frac{16}{25}=\frac{9}{25}\Rightarrow\left[{}\begin{matrix}y=\frac{9}{5}\\y=-\frac{9}{5}\end{matrix}\right.\)
\(\Rightarrow MN=2.\frac{9}{5}=\frac{18}{5}\)
Từ phương trình chính tắc của (E) ta có: \(a = 7,b = 5 \Rightarrow c = 2\sqrt 6 {\rm{ }}(do{\rm{ }}{{\rm{c}}^2} + {b^2} = {a^2})\)
Vậy ta có tọa độ các giao điểm của (E) với trục Ox, Oy là: \({A_1}\left( { - 7;{\rm{ }}0} \right)\)\({A_2}\left( {7;{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ 5}}} \right)\)\({B_2}\left( {0;{\rm{ 5}}} \right)\)
Hai tiêu điểm của (E) có tọa độ là: \({F_1}\left( { - 2\sqrt 6 ;0} \right),{F_2}\left( {2\sqrt 6 ;0} \right)\)
Bạn xem lại đề ạ!
Nếu bạn đã chứng minh được D là trung điểm IQ; E là trung điểm KP; E là trung điểm KP; F là trung điểm LJ
Thì dễ dàng suy ra được: \(\overrightarrow{MD}=\frac{\overrightarrow{MI}+\overrightarrow{MQ}}{2}\); \(\overrightarrow{ME}=\frac{\overrightarrow{MK}+\overrightarrow{MP}}{2}\); \(\overrightarrow{MF}=\frac{\overrightarrow{MJ}+\overrightarrow{ML}}{2}\)
( Vì chúng ta có tính chất: Nếu I là trung điểm đoạn thẳng AB thì mọi điểm M ta có: \(2\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{MB}\))
Câu 1: Điểm A cho vào để đẹp đội hình hay sao ấy :D
(C) tâm B tiếp xúc với d \(\Rightarrow R=d\left(B;d\right)=\frac{\left|3.3-4\left(-4\right)+5\right|}{\sqrt{3^2+\left(-4\right)^2}}=6\)
Phương trình (C):
\(\left(x-3\right)^2+\left(y+4\right)^2=36\)
Câu 2:
\(c^2=a^2-b^2=5-4=1\Rightarrow F_1F_2=2c=2\)
Độ dài trục lớn:
\(a^2=5\Rightarrow A_1A_2=2a=2\sqrt{5}\)
\(\frac{F_1F_2}{A_1A_2}=\frac{2}{2\sqrt{5}}=\frac{\sqrt{5}}{5}\)