K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2023

Em tự vẽ hình nhé!

Có: \(\widehat{CDA}=90^o\)

\(\widehat{CEA}=\widehat{BEA}=90^o\)

\(\Rightarrow\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)

Do đó: tứ giác EADC nội tiếp.

7 tháng 4 2020

a) Xét tam giác DFB có:

\(\hept{\begin{cases}\widehat{D}=90^o\left(DE\perp AB\right)\\\widehat{C}=90^o\end{cases}}\)

=> Tứ giác DFBC nội tiếp

b) Xét tam giác BFG có \(\hept{\begin{cases}\widehat{FBG}=\frac{1}{2}\widebat{AG}\\\widehat{BGF}=\frac{1}{2}\widebat{AE}\end{cases}}\)

Mà cung AB= cùng BG

=> BF=BG 

13 tháng 2 2022

Bài này mk cx ko bt lm ý b , nó khó ghê lun 

 

a) Xét (O) có 

\(\widehat{BFA}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BFA}=90^0\)(Hệ quả góc nội tiếp)

\(\Leftrightarrow\widehat{BFC}=90^0\)
Xét tứ giác DFBC có 

\(\widehat{CDB}\) và \(\widehat{CFB}\) là hai góc đối

\(\widehat{CDB}+\widehat{CFB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DFBC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

20 tháng 11 2021

a, Xét tam giác DOB và tam giác IOA ta có : 

^DOB = ^IOA ( đối đỉnh ) 

^AIO = ^ODB ( DB // CA do cùng vuông AB và 2 góc này ở vị trí so le trong ) 

^OAI = ^OBD = 900 

Vậy tam giác DOB = tam giác IOA ( ch - gn ) 

=> OD = OI ( 2 góc tương ứng ) 

b, Xét tam giác ICD có CO vuông ID hay CO là đường cao 

Lại có IO = OD ( cmt ) => CO là đường trung tuyến 

=> tam giác ICD cân tại C => CI = CD (2) 

Mặt khác : tam giác DOB = tam giác IOA ( cmt ) => BD = IA (1) 

=> CI = AC + IA lại có (1) ; (2) => CD = AC + BD 

c, Dựng OH vuông CD 

Xét tam giác DHO và tam giác HBO ta có : 

^DHO = ^HBO = 900 

^HDO = ^ODB ( cùng ''='' ^CID ) 

OD _ chung 

Vậy tam giác DHO = tam giác HBO ( g.c.g ) 

=> OH = OB = R 

Vậy CD là tiếp tuyến đường tròn (O)