K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Bạn tự vẽ hình nhé!

À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá

1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .

Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC

=> CH là đường cao thứ 3 của \(\Delta\) ABC

=> CH \(\perp\) AB (1)

mà BD \(\perp\) AB (gt) => CH//BD

Có BH \(\perp\) AC (BE là đường cao)

CD \(\perp\) AC

=> BH//CD (2)

Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành

2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM

Có O là trung điểm của AD hay OA = OD

Xét \(\Delta\) AHD có:

HM = DM

OA = OD

=> OM là đường trung bình của \(\Delta\) AHD

=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM

XONG !!ok

20 tháng 12 2020

undefined

9 tháng 1 2021

sai rồi

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình hành.b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hìnhgì?Bài 9: Cho tam giác ABC, trung tuyến AM....
Đọc tiếp

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.

11
3 tháng 3 2020

Bài 12:

:v Mình sửa P là trung điểm của EG

A B C D E O Q N F G M I 1 2 P

a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)

Xét tam giác EAC và tam giác BAG có:

\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)

\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )

+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG 

Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)

\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)

Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )

Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )

\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)

Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)

\(\Rightarrow\widehat{IOC}=90^0\)

\(\Rightarrow BG\perp EC\)

b) Vì ABDE là hình vuông (gt)

\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)

Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)

\(\Rightarrow QM\)là đường trung bình của tam giác EBC

\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)

CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)

Mà EC=BG (cm câu a )

\(\Rightarrow QM=MN=NP=PQ\)

Xét tứ giác MNPQ  có \(QM=MN=NP=PQ\left(cmt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)

CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )

Mà \(BG\perp EC\left(cmt\right)\)

\(\Rightarrow MN\perp MQ\)

\(\Rightarrow\widehat{QMN}=90^0\)(2)

Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb ) 

\(\)

4 tháng 3 2020

Bài 11:

A B C H D P E Q

a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)

\(\Rightarrow\widehat{DAE}=180^0\)

\(\Rightarrow D,A,E\)thẳng hàng

b) Vì AHBD là hình chữ nhật (gt)

\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)

Mà P là trung điểm của AB (gt)

\(\Rightarrow P\)là trung điểm của DH  (1)

\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)

\(\Rightarrow PH=PA\)

\(\Rightarrow P\in\)đường trung trục của AH

CMTT Q thuộc đường trung trực của AH

\(\Rightarrow PQ\)là đường trung trực của AH

c)  Từ (1) => P thuộc DH

=> D,P,H thẳng hàng

d) Vì ABCD là hình chữ nhật (gt)

=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ

=> góc DHA= 45 độ

CMTT AHE =45 độ

=> góc DHA+ góc AHE=90 độ

Hay góc DHE=90 độ

=> DH vuông góc với HE

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
2 tháng 4 2020

  • LUYỆN TẬP
  • HỎI ĐÁP
  • KIỂM TRA

TRỢ GIÚP

  •  
  •  
  • 1
  • khoilaba 

Giúp tôi giải toán và làm văn

 Tìm kiếm 

  • Mới nhất
  • Chưa trả lời
  • Câu hỏi hay
  • Câu hỏi tôi quan tâm
  • Câu hỏi của bạn bè
  • Gửi câu hỏi

Tất cảToánTiếng ViệtTiếng Anh

KHANH QUYNH MAI PHAM

Trả lời

0

Đánh dấu

Hôm kia lúc 10:03

Cho phương trình

x2−2mx+2m−1=0

Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn lx1-x2l=16

Toán lớp 9

Tiểu Duy Hồ Bạch

Trả lời

0

Đánh dấu

31 tháng 3 2019 lúc 9:56

cho tam giác nhọn ABC. Đường tròn tâm O đường kính BC cắt các cạnh AB,AC lần lượt tại các điểm M,N . Gọi H là gia điểm BN, CM; P là giao điểm AH và BC
1. Chứng minh tứ giác AMHN nội tiếp đường tròn
2. Chứng minh BM.BA=BP.BC
3. Trong trường hợp đặc biệt khi tam giác ABC đều cạnh bằng 2a. Tính chu vi đường tròn ngoại tiếp tứ giác AMHN theo a
4. Từ A kẻ các tiếp tuyển AE và AF của đường tròn tâm O đường kính BC ( E,F là các tiếp điểm). Chứng minh ba điểm E,H,F thằng hàng

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn C tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC)
1. Chứng minh tg AEBK nội tiếp đường tròn
2. Chứng minh CE.CB=CK.CA
3. Chứng minh góc OCA = góc BAE

Đọc tiếp...

Được cập nhật Hôm kia lúc 12:35

Câu hỏi tương tự Đọc thêm Báo cáo

Toán lớp 8

Nguyen Thi Phung

Trả lời

0

Đánh dấu

26 tháng 5 2018 lúc 14:58

Cho nửa đường tròn đường kính AB và 1 điểm M bất kì trên nửa đường tròn đó ( M khác A , B ) . Trên nửa mặt phẳng bờ AB chứa nửa đường tròn người ta vẽ tiếp tuyến Ax . Tia BM cắt tia Ax tại I ; tia phân giác của ^IAMcắt nửa đường tròn tại E , cắt tia BM tại F . Tia BE cắt Ax tại H , cắt AM tại K .

a) Chứng minh rằng :

IA2=IM.IB

b) Chứng minh :  Tam giác BAF cân .

c) Chứng minh : tứ giác AKFH là hình thoi 

d) Xác định vị trí M để tứ giác AKFI nội tiếp  được đường tròn .

Đọc tiếp...

Được cập nhật Hôm kia lúc 12:22

Toán lớp 9

Khanhthien Lê

Trả lời

0

Đánh dấu

31 tháng 3 lúc 8:44

Cho đường tròn (O;R) và một điểm A sao cho OA = R . Vẽ các tiếp tuyến AB, AC với đường tròn (A, B là các tiếp điểm). Vẽ góc xOy bằng 450 cắt đoạn thẳng AB và AC lần lượt tại D và E. Chứng minh rằng:

Được cập nhật Hôm kia lúc 11:45

Toán lớp 9

Nguyễn Phương Thảo

Trả lời

0

Đánh dấu

Hôm kia lúc 11:41

BÀI 1:
Trả lời câu 3 (trang 43 sgk Ngữ Văn 6 Tập 2):
Dựa vào bài Vượt thác, hãy viết một đoạn văn từ ba đến năm câu tả dượng
Hương Thư đưa thuyền vượt qua thác dữ; trong đoạn văn có sử dụng cả hai
kiểu so sánh đã được giới thiệu.
GỢI Ý: Hướng dẫn viết đoạn văn:
-  Hình thức: Từ 3- 5 câu diễn đạt mạch lạc.
-  Nội dung: tả cảnh dượng Hương Thư đưa thuyền vượt qua thác dữ.
-  Kĩ năng: Sử dụng hai kiểu so sánh ngang bằng và so sánh không ngang bằng.
Đoạn văn tham khảo 1
Nước từ trên cao phóng xuống định nuốt chửng con thuyền. Nhưng ở phía dưới
dượng Hương Thư nhanh như cắt vừa thả sào, vừa rút sào nhịp nhàng, đều đặn.
Con thuyền được giữ thăng bằng xé ngang dòng nước lao nhanh. Nó chồm lên, sấn
tới, hùng dũng hơn cả dòng thác dữ.
Đoạn văn tham khảo 2: Cảnh Dượng Hương Thư vượt thác được coi là một
trong những đoạn đặc sắc nhất mà tác giả Võ Quảng viết về hành trình người lao
động chinh phục khó khăn, thử thách. Nước từ trên cao đổ xuống hung hãn như
muốn nuốt con thuyền. Dượng Hương Thư bình tĩnh ghì chặt đầu sào, chuyển
hướng thuyền lao nhanh về phía trước. Nhìn dượng lúc đó oai hùng hơn một dũng
sĩ rừng xanh.
ĐOẠN VĂN CỦA HS:

BÀI 2: Chỉ ra và phân tích hiệu quả của biện pháp tu từ so sánh trong đoạn thơ sau:

Những ngôi sao thức ngoài kia
Chẳng bằng mẹ đã thức vì chúng con
Đêm nay con ngủ giấc tròn
Mẹ là ngọn gió của con suốt đời

( Trần Quốc Minh- Mẹ)

GỢI Ý:
+ Nhớ lại các bước làm 1 bài tập tu từ ( 3 bước)
- Gọi tên BPTT

Đọc tiếp...

Ngữ Văn lớp 6

Nguyễn Tiến Quang Vinh

Trả lời

0

Đánh dấu

Hôm kia lúc 9:47

Tìm số tự nhiên m và n sao cho 6^m+2^n+2 là số chính phương

Toán lớp 8

Nguyễn Thanh Hà

Trả lời

0

Đánh dấu

31 tháng 3 lúc 8:12

Cho hệ phương trình :  {

(m−1)x−my=3m−1
2x−y=m+5

a) Gỉai và biện luận hệ phương trình theo m

b) Với giá trị nguyên nào của m để hai đường thẳng của hệ cắt nhau tại 1 điểm nằm trong góc phần tư thứ IV của hệ tọa độ Oxy

GIÚP MÌNH VỚI Ạ !THANKS NHIỀU !!

Đọc tiếp...

Được cập nhật Hôm kia lúc 11:35

Toán lớp 9

Nguyễn Trần Lâm

Trả lời

0

Đánh dấu

30 tháng 3 lúc 14:06

Cho biểu thức 4x^{2}+3x+44x2+3x+4.

Giá trị biểu thức

1) tại x = 3x=3 là  

.

2) tại x = 0x=0 là 

.

3) tại x = -3x=−3 là 

.

Đọc tiếp...

Được cập nhật 30 tháng 3 lúc 18:29

Toán lớp 7

Hoàng Bin

Trả lời

0

Đánh dấu

Hôm kia lúc 12:09

1.Thực hiện phép chia

a,(163-642):82

b,(5x4-3x3+x2):3x2

c,(5xy2+9xy-x2y2):(-xy)

2.Tìm số tự nhiên n để mỗi phép chia sau là phép chia hết

a,(5x3-7x2+x5):3xn

b,(13x4y3-5x3y3+6x2y):5xnyn

3.Tìm a,b để đa thức 2x3+ax+b chia cho x+1 dư -6 và chia cho x-2 dư 21 (Dùng định lý Bơ Du)

Bạn nào biết thì làm nhanh giùm mình với nhé !

Đọc tiếp...

Toán lớp

juni

Trả lời

0

Đánh dấu

Hôm kia lúc 12:50

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (C) tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC).

1. Chứng minh tứ giác ABEK nội tiếp được trong một đường tròn

2. Chứng minh CE.CB = CK.CA

3.Chứng minh góc OCA = góc BAE

4. Cho B,C cố định và A di động trên (C) nhưng vẫn thoả mãn điều kiện tam giác ABC nhọn; khi đó H thuộc 1 đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R=3cm.

Đọc tiếp...

Toán lớp

tramy

Trả lời

0

Đánh dấu

Hôm kia lúc 12:58

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (C) tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC.

1. Chứng minh tứ giác ABEK nội tiếp được đường tròn.

2. Chứng minh CE.CB=CK.CA

3. Chứng minh góc OCA = góc BAE

4. Cho B,C cố định và A di động trên (C) nhưng vẫn thỏa mãn điều kiện tam giác ABC nhọn; khi đó H thuộc 1 đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R= 3cm

giúp mình với ạ, mình cần gấp

Đọc tiếp...

Toán lớp

Hoàng Lâm Tùng tew

Trả lời

0

Đánh dấu

Hôm kia lúc 16:41

Từ điểm M nằm ngoài đường tròn (O;R), vẽ tiếp tuyến MA và cát tuyến MBC ( B nằm giữa M và C )

a) CM: MA.MA=MB.MC

b) Gọi BD, CE lần lượt là hai đường cao của tam giác ABC. CM: ED song song MA

c) Tia DE cắt MC tại F.FA cắt đường tròn (O) tại G. CM: GEA=GFB

Đọc tiếp...

Toán lớp

Chống Đạn

Trả lời

0

Đánh dấu

Hôm kia lúc 16:42

Tìm cụm danh từ trong đoạn văn sau đây vẽ lại cụm danh từ vừa tìm được Điền vào chỗ trống cụm danh từ vừa tìm được hoàn thành

Ngày xưa có một ông vua sai một viên quan đi dò la khắp nước tìm người tài giỏi. Viên quan ấy đã đi nhiều nơi, đến đâu cũng đưa ra những câu đố oái oăm để hút mọi người, nhưng tuy mất nhiều công mà chưa thấy có người nào thật lỗi lạc.

Một hôm, viên quan đi qua một cánh đồng làng kia, chợt thấy bên vệ đường có hai cha con nhà nọ đang làm ruộng: cha đánh trâu cày, con đập đất. Ông bèn dừng ngựa lại hỏi:

Đọc tiếp...

Toán lớp

Hồ Thị Ngọc Như

Trả lời

0

Đánh dấu

Hôm kia lúc 16:43

Có tồn tại hay không số:

22...22 chia hết cho 23(n số 2 )

Toán lớp

Tiến Đạt

Trả lời

0

Đánh dấu

Hôm kia lúc 16:36

(3√aa+√a+b −3aa√a−b√b +1√a−√b ):(a−1)(√a−√b)(2a+2√ab+2b) 
a. Rút gọn P
b. Tìm giá trị nguyên của a để giá trị P nguyên 

Toán lớp 9

Bùi Thị Thương

Trả lời

0

Đánh dấu

Hôm kia lúc 15:56

Bạn Hà gửi bưu thiết và thư cho 15 người bạn của mình tổng số tiền phải trả là là 4680₫ nếu tiền tem 200₫ cho mỗi bưu thiếp là 320₫ đồng cho mỗi lá thư như thì bạn Hà phải trả bao nhiêu tiền bưu thiếp?

Toán lớp 5

Lý Huyền Trang

Trả lời

0

Đánh dấu

Hôm kia lúc 15:01

CMR: A= 3n+3 - 22  .3n + 2n+5 - 33 . 2n chia hết cho 23

Toán lớp 7

Bangtan Bàngtán Bất Bìnhtĩnh

Trả lời

0

Đánh dấu

Hôm kia lúc 15:01

cho tam giác ABC, AC=9cm,BC=10cm,AB=6cm, đường phân giác trong AD, đường phân giác ngoài AE

a) tính DB,DC,BE

b)đường phân giác CF của tg ABC cắt AD ở I. tính tỉ số diện tích tg DIF và ABC

Toán lớp 8

Bùi Thanh Bình

Trả lời

0

Đánh dấu

Hôm kia lúc 15:07

Trên tia Gz lấy điểm H sao cho GH =17dm. Trên tia đối của Gz lấy điểm M sao cho GM 

giúp miki với mik đang cần gấp mik k cho nha!

Toán lớp 6

Đạt

Trả lời

0

Đánh dấu

Hôm kia lúc 15:28

Giúp mình với, sắp nộp bài r.

Cho ∆ABC đồng dạng ∆DEF , biết AB = 5cm, DE = 9cm.

a. Viết tên các cặp góc bằng nhau

b. Tìm tỉ số đồng dạng

c. Tính P và P’. Với P và P’ lần lượt là chu vi của ∆ABC và ∆DEF, biết P’ + P = 28.

Đọc tiếp...

Toán lớp 8

Tải thêm câu hỏi

 Nội quy chuyên mục

 Giải thưởng hỏi đáp

Danh sách chủ đề

Toán lớp 1Toán lớp 2Toán lớp 3Toán lớp 4Toán lớp 5Toán lớp 6Toán lớp 7Toán lớp 8Toán lớp 9Toán lớp 10Toán lớp 11Toán lớp 12Tiếng Việt 1Tiếng Việt 2Tiếng Việt 3Tiếng Việt 4Tiếng Việt 5Ngữ Văn 6Ngữ Văn 7Ngữ Văn 8Ngữ văn 9Ngữ văn 10Ngữ văn 11Ngữ văn 12Tiếng Anh lớp 1Tiếng Anh lớp 2Tiếng Anh lớp 3Tiếng Anh lớp 4Tiếng Anh lớp 5Tiếng Anh lớp 6Tiếng Anh lớp 7Tiếng Anh lớp 8Tiếng Anh lớp 9Tiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Xếp hạng tuần

Lê Nhật Hằng

Điểm SP: 193. Điểm GP: 0.

『✰Ğấʉ ✰』

Điểm SP: 175. Điểm GP: 0.

Phượng Thiên Hoàng Y ( Team ~ Thiên ~ ❄️ Nguyệt ~🌙 )

Điểm SP: 164. Điểm GP: 0.

𝑮𝒊𝒂 𝑯𝒖𝒚

Điểm SP: 120. Điểm GP: 0.

Nhật Quỳnh

Điểm SP: 117. Điểm GP: 23.

゚° ღϮɦẩ๓ йǥųуệϮ Łyღ° ゚

Điểm SP: 113. Điểm GP: 1.

Nguyễn Lê Khánh Linh

Điểm SP: 101. Điểm GP: 0.

★๖ۣۜMĭηʑ☆๖ۣۜŇɦạϮッт๏áɴ๖ۣۜнọςッ

Điểm SP: 94. Điểm GP: 3.

๖ۣۜRan Mori๖ۣۜ.♡

Điểm SP: 91. Điểm GP: 0.

Trần Thu Hà

Điểm SP: 90. Điểm GP: 1.

Bảng xếp hạng

Có thể bạn quan tâm

ôn thi thpt môn toánôn thi thpt môn vật lýôn thi thpt môn hóa họcôn thi thpt môn sinh họcôn thi thpt môn tiếng anhôn thi thpt môn lịch sửôn thi thpt môn địa lýôn thi thpt môn giáo dục công dântài liệu tham khảo môn toántài liệu tham khảo môn ngữ văntài liệu tham khảo môn sinh họctài liệu tham khảo môn vật lýtài liệu tham khảo môn hóa họctài liệu tham khảo môn lịch sửtài liệu tham khảo môn địa lýtài liệu tham khảo môn tiếng anhtài liệu tham khảo môn giáo dục công dân

Tài trợ

Học kỹ năng trực tuyến

Áo thun chuyên nghiệp aothunchuyennghiep

Doremon chế

Khảo sát trực tuyến KsvPro

Quản lý và chia sẻ tài liệu học tập

Luyện thi trung học phổ thông quốc gia

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

© 2013 - Trường Đại học Sư phạm Hà Nội (email: a@olm.vn)

103.35.64.88

13 tháng 4 2022

cái gì vậy?

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB&lt;AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

tên các điểm bn tự đặt nha

a) ta có CK // HB ( do cùng vuông góc với AC)

              CH// BK (do cùng vuông góc với AB)

tứ giác BKCH có  CK // HB ,CH// BK => BKCH là hbh

b) ta có góc A+B+C+K = 180 (tổng các góc tứ giác)

                      A+K = 90

                          K= 30   

c) HBH. CHBK có M là trung điểm CB => M cũng là trung điểm của HK

d) ta có AH vuông góc BC, OM vuông góc BC => AH // OM

  tam giác AKH có AH//OM, KM=MH =>AO=OK (1)

từ O kẻ OS sao cho SA=SB

tam giác AKB có SA=SB, AO=OK => OS//BK 

 lại có BK vuông góc AB, OS// BK => OS vuông góc AB hay OS là đường trung trực tam giác ABC

=> OA=OB=OC(2)

từ 1 và 2 => OA=OB=OC=OK