K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

c) ký hiệu các góc QOB, BOF, FOM, MOC, COE, EOA, AOP lần lượt là O1, O2, O3, O4, O5, O6, O7

Dễ thấy O5+O6+O7=90 mà O6=O4+O5 nên suy ra 2O5+O4+O7=90 (1) 

tương tự 2O2+O1+O4=90 (vì O2=O3) (2). 

mặt khác O7=O1 vì cùng phụ với 2 góc P và Q là 2 góc bằng nhau

Từ đó ta có O2=O5

lại có O2+OFQ =90

O5+POE=90 suy ra OFQ =POE (dpcm)

d) tam giác PEO đồng dạng với tam giác QOF nên suy ra PE.QF=OP.OQ=OP^2

Áp dụng bđt Cosi ta có PE+QF>= 2 căn PE.QF=2.căn OP^2=2OP=PQ (dpcm)

26 tháng 4 2020

hi bạn nha bạn ten gì vậy bạn

2 tháng 6 2017

Ban oi ko co diem E, sai de roi

2 tháng 6 2017

a. Ta có : góc CAO = 90

góc CBO = 90
=> góc CAO + góc CBO = 180

=> Tứ giác AOBC nội tiếp

9 tháng 4 2018

Bạn có thể tham khảo ở đây :

Câu hỏi của Anh Bên - Toán lớp 9 - Học toán với OnlineMath

10 tháng 7 2017

Đường tròn

(bik vẽ hình mà k bik giải ^_^ pó tay r bạn​ :D )

19 tháng 5 2019

vex trường hợp đặc biết thách giải đc

 

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
15 tháng 5 2021

85axfHu.png

4) Ta có: \(AM//PQ\)( cùng vuông góc với OC )

Xét tam giác COQ có: \(EM//OQ\)

\(\Rightarrow\frac{CE}{CO}=\frac{EM}{OQ}\)( hệ quả của định lý Ta-let )  (1) 

Xét tam giác COP có: \(AE//OP\)

\(\Rightarrow\frac{CE}{CO}=\frac{AE}{OP}\)( hệ quả của định lý Ta-let ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{EM}{OQ}=\frac{AE}{OP}\)Mà AE=EM

\(\Rightarrow OQ=OP\)

Xét tam giác CPQ và tam giác COP có chung đường cao hạ từ  C, đáy \(OP=\frac{PQ}{2}\)

\(\Rightarrow S_{\Delta CPQ}=2.S_{\Delta COP}\)

Ta có: \(S_{\Delta COP}=\frac{1}{2}OA.CP=\frac{1}{2}R.CP\)

Áp dụng hệ thức lượng trong tam giác COP vuông tại O có đường cao OA ta có:

\(OA^2=CA.AP\)

Mà \(CA.AP\le\frac{\left(CA+AP\right)^2}{4}=\frac{PC^2}{4}\)( BĐT cô-si )

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\)

\(\Rightarrow PC^2\ge4OA^2\)

\(\Rightarrow PC\ge2OA=2R\)

\(\Rightarrow S_{\Delta COP}\ge R^2\)

\(\Rightarrow S_{\Delta CPQ}\ge2R^2\)

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\) 

Mà tam giác COP vuông tại O có đường cao OA

\(\Rightarrow AC=AP=OA=R\)

Khi đó áp dụng định lý Py-ta-go vào tam giác CAO vuông tại A ta được:

\(AC^2+AO^2=OC^2\)

\(\Rightarrow OC=\sqrt{AC^2+AO^2}=R\sqrt{2}\)

Vậy điểm C thuộc đường thẳng d sao cho \(OC=R\sqrt{2}\)thì diện tích tam giác CPQ nhỏ nhất 

15 tháng 5 2021

giải hộ mik câu 4 nhé thanks

a: \(CA=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

b: Xét ΔCAD và ΔCEA có

góc CAD=góc CEA

góc ACD chung

=>ΔCAD đồng dạng vơi ΔCEA

=>CA/CE=CD/CA

=>CA^2=CE*CD

c: Xét (O) có

CA,CB là tiếp tuýen

nên CA=CB

mà OA=OB

nên OC là trung trực của AB

=>OC vuông góc AB

=>CH*CO=CA^2=CD*CE

=>CH/CE=CD/CO

=>ΔCHD đồng dạng với ΔCEO

=>góc CDH=góc COE