Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất 2 tiếp tuyến cắt nhau, ta có:
\(\left\{{}\begin{matrix}AD=MD\\BC=MC\end{matrix}\right.\Rightarrow AD+BC=MD+MC=CD\)
Vì \(\left\{{}\begin{matrix}AD=MD\\OA=OM=R\end{matrix}\right.\Rightarrow OD\) là trung trực AM
Mà tam giác OAM cân tại O nên OD cũng là p/g
\(\Rightarrow\widehat{DOM}=\dfrac{1}{2}\widehat{AOM}\)
Cmtt: \(\widehat{COM}=\dfrac{1}{2}\widehat{BOM}\)
Mà \(\widehat{AOM}+\widehat{BOM}=180^0\)
Cộng VTV ta được \(\widehat{COD}=\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{AOM}+\widehat{MOB}\right)=90^0\)
Gọi I là trung điểm CD
\(\Rightarrow OI=IC=ID=\dfrac{1}{2}CD\)
Do đó I là tâm \(\left(COD\right)\)
Lại có \(\left\{{}\begin{matrix}IC=ID\\OA=OB\end{matrix}\right.\Rightarrow OI\) là đtb
\(\Rightarrow OI\text{//}AC\Rightarrow OI\bot AB\)
Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.
Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.
b) Xét tứ giác OMCN có:
∠(OMC) = 90 0 (AC ⊥ OD)
∠(ONC) = 90 0 (CB ⊥ OE)
∠(NCM) = 90 0 (AC ⊥ CB)
⇒ Tứ giác OMCN là hình chữ nhật
Sử dụng tính chất hai tiếp tuyến
a, Ta có: AC = CM; BD = DM => AC+BD=CD
b, C O A ^ = C O M ^ ; D O M ^ = D O B ^
=> C O D ^ = 90 0
c, AC.BD = MC.MD = M O 2 = R 2
d, Gọi I là trung điểm của CD. Sử dụng tính chất trung tuyến ứng với cạnh huyền trong tam giác vuông và đường trung bình trong hình thang để suy ra đpcm
a) Nối B với M
Xét tam giác OBM,có:
OB=OM(Cùng là bán kính)
=>Tam giác OBM cân tại O
=>Góc OMB=Góc OBM (2gocs tương ứng)
Ta có:By tiếp tuyến với đg tròn (O) tại B
=>Góc OBy=90o(t/c...)
Hay góc OBC=90o (C∈By)
CD tiếp tuyến với đg tròn (O)
=>Góc OMD=góc OMC=90o(t/c...)
Ta có:OBM+MBD=OBD
OMB+BMD=OMD
MàOBM=OMB (cmt)
OBD=OMD (=90o)
=>MBD=BMD
Xét tam giác BMD, có:
MBD=BMD (cmt)
=>Tam giác BMD cân tại D
=>BD=MD (2 cạnh tương ứng)
Nối A với M
Xét tam giác AOM,có:
OA=OM (cùng là R)
=>TAm giác OAM cân tại O
=>OAM=OMA(2 góc tương ứng)
Ta có :Ax tiếp tuyến với đg tròn (O) tại A
=>OAx=90o
HayOAC=90o (C∈Ax)
Ta có :OAM+MAC=OAC
OMA+AMC=OMC
Mà:OAM=OMA(cmt)
OAC=OMC(=90o)
=>MAC=AMC
Xét tam giác ACM,có:
MAC=AMC(cmt)
=>Tam giác ACM cân tại C
=>AC=CM(2 cạnh tương ứng)
Ta có:CM+MD=CD
Mà:CM=AC(cmt)
MD=BD(cmt)
=>AC+BD=CD
b)Gọi E là gđ của AM và CO
Ta có : AC cắt CM tại C
Mà AC và CM là tiếp tuyến của đg tròn (O)
=>AC=MC;CO là p/g của ACM(...)
Vì CO là p/g của ACM(cmt)
=>ACO=MCO
Hay ACI=MCI
Xét tam giác ACI và tam giác MCI,có:
AC=MC(cmt)
ACO=MCO(cmt)
CI là cạnh chung
=>Tam giác ACI=Tam giác MCI(c.g.c)
=>AIC=MIC(2 góc tương ứng);AI=MI
Ta có:AIC+MIC=180o(2 góc bù nhau)
Mà AIC=MIC(cmt)
=>AIC=90o
=>OC⊥AM tại I
a: Xét tứ giác ABDC có
AC//BD
góc CAB=90 độ
Do đó: ABDC là hình thang vuông
b: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
c: Xét (O) có
CA,CM là tiêp tuyến
nên CA=CM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB
CM+MD=CD
=>AC+BD=CD