K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Ôn tập chương Hình trụ, Hình Tròn, Hình cầu

a) Do MA, MB là các tiếp tuyến nên \(\widehat{MBO}=\widehat{MAO}=90^o\)

Xét tứ giác MBOA có \(\widehat{MBO}=\widehat{MAO}=90^o\) mà đỉnh A và đỉnh B đối nhau nên MBOA là tứ giác nội tiếp.

Vậy M, B, O, A cùng thuộc một đường tròn. (1)

Xét đường tròn (O) có I là trung điểm dây cung CD nên theo quan hệ đường kính dây cung ta có \(OI\perp CD\)

Suy ra \(\widehat{MIO}=90^o\)

Xét tứ giác MIOA có \(\widehat{MIO}=\widehat{MAO}=90^o\) mà đỉnh A và đỉnh I đối nhau nên MIOA là tứ giác nội tiếp.

Vậy M, I, O, A cùng thuộc một đường tròn. (2)

Từ (1) và (2) suy ra O, A, M, B, I cùng thuộc đường tròn đường kính MO.

b) Do M, B, I, A thuộc đường tròn đường kính MO nên \(\widehat{BIM}=\widehat{BAM}\) (Hai góc nội tiếp cùng chắn cung AM)

Xét đường tròn (O) ta lại có : \(\widehat{BAM}=\widehat{BEA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BA)

Suy ra \(\widehat{BIM}=\widehat{BEA}\)

Mà chúng lại ở vị trí đồng vị nên AE // CD.

c) Xét tam giác BCM và tam giác DBM có:

Góc M chung

\(\widehat{MBC}=\widehat{MDB}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)

\(\Rightarrow\Delta BCM\sim\Delta DBM\left(g-g\right)\Rightarrow\dfrac{BM}{DN}=\dfrac{CM}{BM}\Rightarrow BM^2=CM.DM\)

Xét tam giác vuông MBC, đường cao BH, theo hệ thức lượng ta có:

\(BM^2=MH.MO\)

Từ đó ta có \(CM.DM=MH.MO\Rightarrow\dfrac{MH}{MD}=\dfrac{MC}{MO}\)

Vậy thì \(\Rightarrow\Delta HCM\sim\Delta DOM\left(c-g-c\right)\Rightarrow\widehat{CHM}=\widehat{ODC}\)

Xét tứ giác CHOD có \(\widehat{CHM}=\widehat{ODC}\)\(\widehat{CHM}\) là góc ngoài tại đỉnh H, đối diện đỉnh D nên CHOD là tứ giác nội tiếp.

Do đó \(\widehat{DHO}=\widehat{DCO}\)

Xét tam giác vuông CIO có : \(CI=\dfrac{\sqrt{3}R}{2};CO=R\Rightarrow\cos\widehat{ICO}=\dfrac{CI}{CO}=\dfrac{\sqrt{3}}{2}\)

\(\Rightarrow\widehat{DCO}=30^o\)

Vậy thì \(\widehat{DHO}=30^o\)

9 tháng 3 2020

Bạn ơi ở câu c góc MBC= góc MBD í thì bạn giải thích đc k

17 tháng 4 2018

a, HS tự chứng minh

b, OM = R 2

c, MC. MD = M A 2  = MH.MO

=> MC. MD = MH.MO

=> DMHC ~ DMDO (c.g.c)

=>  M H C ^ = M D O ^ => Tứ giác CHOD nội tiếp

Chứng minh được:  M H C ^ = O H D ^

=>  C H B ^ = B H D ^ (cùng phụ hai góc bằng nhau)

30 tháng 3 2018

Bài này dễ mà bạn ^_^

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)