Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABOC có:
\(\widehat{ABO}=\widehat{ACO}=90^o\)
\(\Rightarrow\widehat{ABO}+\widehat{ACO}=180^o\)
=> tứ giác ABOC nội tiếp
a: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC và góc OBA=góc OCA=90 đọ
Xét tứ giác ABOC có
góc OBA=góc OCA=góc BOC=90 độ
AB=AC
=>ABOC là hìh vuông
b: Xét (O) có
MB,MI là tiếp tuyến
=>MB=MI và góc IOM=góc BOM=1/2*góc IOB
Xét (O) có
NC,NI là tiếp tuyến
=>NC=NI và góc ION=góc CON=1/2*góc IOC
mà góc MON=1/2*góc BOC=45 độ
nên góc HON=45 độ
góc BOC=90 độ
=>sđ cung BC=90 độ
=>góc NCM=1/2*sđ cung BC=45 độ
=>góc NCH=45 độ
Vì góc NCH=góc NOH
nên OHNC nội tiếp
a, AD là phân giác B A C ^
=> D là điểm chính giữa B C ⏜ => OD ⊥ BC
Mà DE là tiếp tuyến => ĐPCM
b, E C D ^ = 1 2 s đ C D ⏜ = D A C ^ = B A D ^ => Đpcm
c, HC = P 3 2 => H O C ^ = 60 0 => B O C ^ = 120 0
=> l B C ⏜ = π . R . 120 0 180 0 = 2 3 πR
a. Xét tứ giác ABOC có: \(\left\{{}\begin{matrix}\widehat{BOC}=\widehat{OBA}=\widehat{OCA}=90^o\\BO=CO=R\end{matrix}\right.\) \(\Rightarrow\)Tứ giác ABOC là hình vuông
b. Gọi \(E=HN\cap OI\)
Ta có: \(\left\{{}\begin{matrix}\widehat{HEO}=\widehat{IEN}\left(đối.đỉnh\right)\\\widehat{IEN}=\widehat{HMN}\left(cùng.phụ.\widehat{HNM}\right)\end{matrix}\right.\) \(\Rightarrow\widehat{HEO}=\widehat{HMN}\)
\(\Rightarrow\widehat{OHE}=\widehat{OIM}=90^o\)
Xét tứ giác OHNC có: \(\widehat{OCN}+\widehat{OHN}=90^o+90^o=180^o\)
\(\Rightarrow\)Tứ giác OHNC nội tiếp
a) Vì AB,AC là tiếp tuyến của (O) \(\Rightarrow\hept{\begin{cases}AB\perp OB\\AC\perp OC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{ABO}=90^0\\\widehat{ACO}=90^0\end{cases}}\)
Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác ABOC
\(\Rightarrow ABOC\)nội tiếp ( dhnb )
b) Xét (O) có AB là tiếp tuyến tại B ; MB là dây cung
\(\Rightarrow\widehat{ABM}=\widehat{ANB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)
Xét tam giác ABM và tam giác ANB có:
\(\hept{\begin{cases}\widehat{BAN}chung\\\widehat{ABM}=\widehat{ANB}\left(cmt\right)\end{cases}\Rightarrow\Delta ABM~\Delta ANB\left(g-g\right)}\)
\(\Rightarrow\frac{AB}{AM}=\frac{AN}{AB}\Rightarrow AB^2=AM.AN\left(1\right)\)
c) Gọi H là giao điểm của BC và AO
Xét tam giác ABH và tam giác AOB có:
\(\hept{\begin{cases}\widehat{BAO}chung\\\widehat{AHB}=\widehat{ABO}=90^0\end{cases}}\Rightarrow\Delta ABH~\Delta AOB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AH}=\frac{AO}{AB}\Rightarrow AB^2=AO.AH\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AM.AN=AH.AO\)
\(\Rightarrow\frac{AM}{AH}=\frac{AO}{AN}\)
Xét tam giác AMH và tam giác AON có:
\(\hept{\begin{cases}\widehat{NAO}chung\\\frac{AM}{AH}=\frac{AO}{AN}\left(cmt\right)\end{cases}\Rightarrow\Delta AMH~\Delta AON\left(c-g-c\right)}\)
\(\Rightarrow\widehat{AHM}=\widehat{ANO}\)
Mà \(\widehat{AHM}+\widehat{MHO}=180^0\)
\(\Rightarrow\widehat{ANO}+\widehat{MHO}=180^0\)
Xét tứ giác MHON có
\(\widehat{ANO}+\widehat{MHO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác MHON
\(\Rightarrow MHON\)nội tiếp ( dhnb )
\(\Rightarrow\widehat{NMO}=\widehat{NHO}\left(3\right)\)
Vì H là giao điểm của BC và AO ( h.vẽ )
Mà \(AB,AC\)là tiếp tuyến của (O)
\(\Rightarrow BC\perp OA\)
\(\Rightarrow\widehat{BHO}=90^0\)
Vì NF là tiếp tuyến của (O) tại N
\(\Rightarrow\widehat{ÒNF}=90^0\)
Xét tứ giác FHON có:\(\widehat{FHO}+\widehat{FNO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác FHON
=> FHON nội tiếp ( dhnb )
\(\Rightarrow\widehat{NHO}=\widehat{NFO}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\widehat{NMO}=\widehat{NFO}\)
\(\Rightarrow FMON\)nội tiếp (dhnb)
\(\Rightarrow\widehat{FMO}+\widehat{FNO}=180^0\)
\(\Rightarrow\widehat{FMO}=90^0\)
\(\Rightarrow FM\perp OM\)
\(\Rightarrow FM\)là tiếp tuyến của (O)
d) Vì E thuộc đường tròn ngoại tiếp tam giác MNO
\(\Rightarrow E\)thuộc đường tròn đường kính OF
\(\Rightarrow\widehat{OEF}=90^0\)
+) Vì E thuộc đường tròn ngoại tiếp tứ giác ABOC hay E thuộc đường tròn đường kính AO
\(\Rightarrow\widehat{AEO}=90^0\)
\(\Rightarrow\widehat{OEF}+\widehat{AEO}=180^0\)
\(\Rightarrow A,E,F\)thẳng hàng
Lại có vì góc AEO= 90 độ \(\Rightarrow OE\perp AF\left(5\right)\)
Gọi K là trung điểm của MN
\(\Rightarrow OF\perp MN\)
\(\Rightarrow AK\perp OF\)
Xét tam giác AOF có: \(\hept{\begin{cases}AK\perp OF\\FH\perp AO\end{cases}}\)mà AK cắt FH tại P
=> P là trực tâm của tam giác AOF
\(\Rightarrow OP\perp AF\left(6\right)\)
Từ (5) và (6) \(\Rightarrow O,E,P\)thẳng hàng ( đpcm )
+ ΔOBC có OB = OC = BC (= R)
⇒ ΔOBC là tam giác đều
+ là góc tạo bởi tiếp tuyến BA và dây BC
+ là góc tạo bởi tiếp tuyến AC và dây CB
+ ΔOBC có OB = OC = BC (= R)
⇒ ΔOBC là tam giác đều
+ là góc tạo bởi tiếp tuyến BA và dây BC
+ là góc tạo bởi tiếp tuyến AC và dây CB
Kiến thức áp dụng
+ Trong một đường tròn, số đo của cung là số đo của góc ở tâm chắn cung đó.
+ Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.
a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
b: Xét ΔOCB co OB=OC=BC
nen ΔOBC đều
=>góc OBC=60 độ
=>góc ABC=30 độ