Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)AOB vuông tại B có
\(\cos\widehat{AOB}=\dfrac{OB}{OA}\)(Tỉ số lượng giác góc nhọn)
\(\Leftrightarrow\cos\widehat{AOB}=\dfrac{R}{2\cdot R}=\dfrac{1}{2}\)
hay \(\widehat{AOB}=60^0\)
Vậy: \(\widehat{AOB}=60^0\)
b) Ta có: ΔOBA vuông tại B(OB⊥BA)
nên \(\widehat{AOB}+\widehat{BAO}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BAO}=30^0\)
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AO là tia phân giác của \(\widehat{BAC}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{BAO}=\widehat{CAO}\)
hay \(\widehat{CAO}=30^0\)
Ta có: \(\widehat{CAO}+\widehat{MAO}=\widehat{MAC}\)(Vì tia AO nằm giữa hai tia AM,AC)
hay \(\widehat{MAO}=60^0\)
Xét ΔMOA có
\(\widehat{MAO}=60^0\)(cmt)
\(\widehat{MOA}=60^0\)(\(\widehat{AOB}=60^0\))
Do đó: ΔMOA đều(Dấu hiệu nhận biết tam giác đều)
⇒MA=MO(đpcm)
c) Ta có: ΔOBA vuông tại B(OB⊥BA)
mà BI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)
nên \(BI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AI=\dfrac{OA}{2}\)(I là trung điểm của OA)
nên BI=AI(1)
Ta có: ΔOCA vuông tại C(OC⊥CA)
mà CI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)
nên \(CI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AI=\dfrac{AO}{2}\)(I là trung điểm của OA)
nên CI=AI(2)
Từ (1) và (2) suy ra IA=IB=IC
hay I là giao điểm 3 đường trung trực của ΔABC
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: \(\widehat{BAC}=\widehat{BAO}+\widehat{CAO}\)(tia AO nằm giữa hai tia AB,AC)
hay \(\widehat{BAC}=60^0\)
Xét ΔABC có AB=AC(cmt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)(cmt)
nên ΔABC đều(Dấu hiệu nhận biết tam giác đều)
Xét ΔABC đều có I là giao điểm 3 đường trung trực của tam giác(cmt)
mà trong tam giác đều, giao điểm 3 đường trung trực cũng chính là giao điểm của 3 đường phân giác(Định lí tam giác đều)
nên I là giao điểm của 3 đường phân giác trong ΔBAC
hay I là tâm đường tròn nội tiếp ΔABC(đpcm)
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC và AO là phân giác của góc BAC
Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
AO là phân giác của góc BAC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)
Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔABC đều
b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot OA=R^2\)
+ Ta có: AB là tiếp tuyến của (O)(gt)
nên AB\(\perp\)OB
=> \(\Delta\)OBA vuông tại B(đpcm)
+ Xét \(\Delta\)OAK Có A1=A2 ( 1 ) (t/c 2 tiếp tuyến cắt nhau)
OK // AB => A1 = O1 ( 2 ) (so le trong)
Từ (1, 2) => (đpcm)
b, Xét \(\Delta\)AKO cân tại K (cmt)
IA = IO (=R)
=> KI là đường trung tuyến \(\Delta\)AKO
=> KI cũng là đường cao
=> KI\(\perp\)AO hay KM \(\perp\)IO
Vậy KM là tiếp tuyến của (O) (đpcm)
c, MI = MB ; KI = KC ; AB = AC ( t/c 2 tiếp tuyến cắt nhau )
Xét \(\Delta\)ABO vuông tại B (cmt)
AD định lí Py ta go ta cs :
AO2 =AB2 + OB2
AB2 = AO2 - OB2
AB2 = 4R2 - R2
AB = \(R\sqrt{3}\)
dễ rùi tự lm tiếp
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC