K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

không ai giúp câu này hết

câu a

 Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân tại A. 
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1) 
Mặt khác xét 2 tam giác BMF và CME có : BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong) => tam giác BMF = tg CME => BF = CE (2) 
Từ (1) và (2) => đpcm

mấy câu còn lại bó tay

3 tháng 8 2017

a)

OA = OB ( = R)

=> \(\Delta\) OAB cân tại O có OM là đ.t.tn. (M là tđ của AB)

=> OM là đ.c. của \(\Delta\)OAB

=> OM _I_ AB

b)

\(\Delta\)OAB vuông cân (OA = OB)

=> \(AB=\sqrt{2}OA=\sqrt{2}R\)

OM là đ.t.tn. của \(\Delta\)OAB cân tại O

\(\Rightarrow OM=AM=BM=\dfrac{AB}{2}=\dfrac{\sqrt{2}R}{2}\)

c)

\(OM=\dfrac{\sqrt{2}R}{2}\) mà R không đổi

=> M luôn di động trên 1 đường cố định cách tâm O một khoảng bằng \(\dfrac{\sqrt{2}R}{2}\) khi AB di động.

3 tháng 8 2017

vâng! thks you <3

23 tháng 11 2019

A B C O I G J S K H L A' M N

a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900

Vậy I thuộc đường tròn đường kính OC cố định (đpcm).

b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB

Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).

c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC

Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)

Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.

d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.

Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)

Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).

23 tháng 11 2019

Chào chú Minh.

Áp dụng định lí Pytago vào ΔOBA vuông tại O, ta được:

\(AB^2=OA^2+OB^2\)

\(\Leftrightarrow AB^2=R^2+R^2=2R^2\)

hay \(AB=R\sqrt{2}\)

Ta có: ΔOBA vuông tại O

mà OM là đường trung tuyến ứng với cạnh huyền AB

nên \(OM=\dfrac{AB}{2}=\dfrac{R\sqrt{2}}{2}\)