Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét đường tròn (O;R) đường kính AB:
MN là tiếp tuyến; N là tiếp điểm (gt).
=> MN \(\perp\) ON (Tính chất tiếp tuyến).
=> Góc MNO = 90o.
1: Ta có \(\widehat{KAO}=\widehat{KMO}=90^o\) nên tứ giác KAOM nội tiếp.
2: Theo hệ thức lượng trong tam giác vuông ta có \(OI.OK=OA^2=R^2\)
3: Phần thuận: Dễ thấy H thuộc KI.
Ta có \(\widehat{AHO}=90^o-\widehat{HAI}=\widehat{AMK}=\widehat{AOK}\) nên tam giác AHO cân tại A.
Do đó AH = AO = R.
Suy ra H thuộc (A; R) cố định.
Phần đảo cm tương tự.
Vậy...
a: Xét tứ giác KAOM có
\(\widehat{KAO}+\widehat{KMO}=180^0\)
Do đó: KAOM là tứ giác nội tiếp
b: Xét (O) có
KA là tiếp tuyến
KM là tiếp tuyến
Do đó: KA=KM
hay K nằm trên đường trung trực của AM(1)
Ta có: OA=OM
nên O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra OK là đường trung trực của AM
hay OK\(\perp\)AM
Xét ΔOAK vuông tại A có AI là đường cao
nên \(OI\cdot OK=OA^2\)
a) Xét tứ giác AOMC có
ˆCAOCAO^ và ˆCMOCMO^ là hai góc đối
ˆCAO+ˆCMO=1800(900+900=1800)CAO^+CMO^=1800(900+900=1800)
Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Ta có: AOMC là tứ giác nội tiếp(cmt)
nên ˆMAO=ˆOCMMAO^=OCM^(hai góc cùng nhìn cạnh OM)
hay ˆMAB=ˆOCDMAB^=OCD^
Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(Gt)
CA là tiếp tuyến có A là tiếp điểm(Gt)
Do đó: OC là tia phân giác của ˆAOMAOM^(Tính chất hai tiếp tuyến cắt nhau)
⇔ˆAOM=2⋅ˆCOM⇔AOM^=2⋅COM^
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: OD là tia phân giác của ˆMOBMOB^(Tính chất hai tiếp tuyến cắt nhau)
⇔ˆBOM=2⋅ˆMOD⇔BOM^=2⋅MOD^
Ta có: ˆAOM+ˆBOM=1800AOM^+BOM^=1800(hai góc kề bù)
mà ˆAOM=2⋅ˆCOMAOM^=2⋅COM^(cmt)
và ˆBOM=2⋅ˆMODBOM^=2⋅MOD^(cmt)
nên 2⋅ˆCOM+2⋅ˆMOD=18002⋅COM^+2⋅MOD^=1800
⇔ˆCOM+ˆMOD=900⇔COM^+MOD^=900
mà ˆCOM+ˆMOD=ˆCODCOM^+MOD^=COD^(tia OM nằm giữa hai tia OC,OD)
nên ˆCOD=900COD^=900
Xét ΔCOD có ˆCOD=900COD^=900(cmt)
nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)
Xét (O) có
ΔMAB nội tiếp đường tròn(M,A,B∈(O))
AB là đường kính(gt)
Do đó: ΔMAB vuông tại M(Định lí)
Xét ΔAMB vuông tại M và ΔCOD vuông tại O có
ˆMAB=ˆOCDMAB^=OCD^(cmt)
Do đó: ΔAMB∼ΔCOD(g-g)
⇔AMCO=BMDOAMCO=BMDO(Các cặp cạnh tương ứng tỉ lệ)
hay AM⋅OD=BM⋅OCAM⋅OD=BM⋅OC(đpcm)
Xét đường tròn (O;R) đường kính AB:
MN là tiếp tuyến; N là tiếp điểm (gt).
=> MN ⊥ ON (Tính chất tiếp tuyến).
=> Góc MNO = 90o (đpcm).