K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

OH là một phần đường kính

BC là dây

OH⊥BC tại H 

Do đó: H là trung điểm của BC

Xét tứ giác OBIC có

H là trung điểm của đường chéo BC

H là trung điểm của đường chéo OI

Do đó: OBIC là hình bình hành

mà OB=OC

nên OBIC là hình thoi

Suy ra: BI=OB=R

Xét (O) có

ΔABI nội tiếp đường tròn

AI là đường kính

Do đó: ΔABI vuông tại B

Xét ΔABI vuông tại B có

\(\sin\widehat{BAI}=\dfrac{BI}{AI}=\dfrac{1}{2}\)

nên \(\widehat{BAI}=30^0\)

Xét ΔABC có 

AH là đường trung tuyến ứng với cạnh BC

AH là đường cao ứng với cạnh BC

Do đó: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên AH là đường phân giác ứng với cạnh BC

Suy ra: \(\widehat{BAC}=60^0\)

Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)

nên ΔABC đều

11 tháng 5 2017

bài náy giống bài của mik quá bn ơi

a: Xét ΔCAO có 

CM là đường trung tuyến ứng với cạnh AO

CM là đường cao ứng với cạnh AO

Do đó: ΔCAO cân tại C

mà OA=OC

nên ΔCAO đều

24 tháng 9 2021

còn 2 câu nữa ạ giúp em với

 

11 tháng 3 2016

c)taxét tam giác aen và tam giác KBH có E=H =90 góc EBA chung => hai tam giác đồng dạng => EB.KB=BH.AB mà BH.AB=BC^2 => EB.KB=BC^2 mặt khác tan có BH.HA=CH^2 vậy biểu thức sẽ là BC^2-CH^2=HB^2

d)ta có vì tứ giác AEKH NỘI TIẾP đường tròn đường kính EK => tam giácEKH nội tiếp đưowngf tròn bán kính AK vậy để r lớp nhất => AK lớ nhất, vì tam giác AKH là tam giác vuông => góc AKH<90 vậy AKH là góc tù => AK<AC vậy AK lớn nhất khi bằng AK => E trùng với C thì AK bằng AC => để đường tròn ngoại tiếp tam giác EKH có bán kính lớn nhất thì E trùng với C

10 tháng 6 2015

a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).

(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)

b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)

ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH

=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)

c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID

tam giác ADH: DI là trung tuyến

tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.

Nhớ L I K E nha

 

 

a) Ta có: AB//DE(gt)

CD⊥AB(gt)

Do đó: DE⊥CD(Định lí 2 từ vuông góc tới song song)

\(\widehat{CDE}=90^0\)

Xét ΔCDE có \(\widehat{CDE}=90^0\)(cmt)

nên ΔCDE vuông tại D(Định nghĩa tam giác vuông)

⇔D nằm trên đường tròn đường kính CE

⇔C,D,E nằm trên đường tròn đường kính CE

mà C,D,E cùng nằm trên (O)(gt)

nên CE là đường kính của (O)

hay C,O,E thẳng hàng(đpcm)

22 tháng 2 2021

Câu a tính số đoa cứng nhỏ BE mà bạn