K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

Bài này căng đấy =))

C E B A D O I H

a) Do AB là tiếp tuyến của (O) với B là tiếp điểm (gt)

nên : \(AB\perp OB\)( tc tiếp tuyến )

\(\Rightarrow\widehat{ABO}=90^o\)(1)

Do H là trung điểm của dây DE (gt)

nên : \(OH\perp DE\)( liên hệ giữa đường kính và dây )

\(\Rightarrow\widehat{AHO}=90^o\)(2)

- Xét tứ giác ABOH ta có :

+) \(\widehat{ABO}\)và  \(\widehat{AHO}\)là hai góc đối diện

+) \(\widehat{ABO}+\widehat{AHO}=90^o+90^o=190^o\)( do (1) và (2))

=> ABOH là tứ giác nội tiếp 

=> 4 điểm A , B , O , H thuộc cùng 1 đường tròn ( đpcm )

b) Ta có : +) \(\widehat{B_1}\)là góc giữa tia tiếp tuyến và dây cung chắn cung \(\widehat{BD}\)của (O)

+) \(\widehat{E_1}\)là góc nội tiếp chắn cung \(\widehat{BD}\)của (O)

\(\Rightarrow\widehat{B_1}=\widehat{E_1}=\frac{1}{2}sđ\widebat{BD}\)( tính chất )

Xét 2 tam giác : ABD và AEB có :

\(\widehat{B_1}=\widehat{E_1}\left(cmt\right)\)

\(\widehat{A}\)chung

\(\Rightarrow\Delta ABD~\Delta AEB\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{BD}{EB}\)( tỉ số đồng dạng )

\(\Rightarrow\frac{AB}{AE}=\frac{BD}{BE}\left(đpcm\right)\)

23 tháng 1 2021

P/s : câu a) có nhiều cách chứng minh khác nữa bạn nhé . Bạn làm cách này có thể hay hơn là vì những gì đã nói ở trên về phương pháp trình bày và đồng thời chứng minh cũng áp dụng được cho nhiều bài khác ( Khi \(\widehat{ABO}\)và \(\widehat{AHO}\)không phải là những góc 90 độ )

7 tháng 8 2020

Đề thi vào lớp 10 môn toán chuyên Sư Phạm Hà Nội năm 2020-2021

10 tháng 3 2019

Giải hộ mình với 

1: ΔOED cân tại O

mà OH là trung tuyến

nên OH vuông góc DE

góc OHA=góc OBA=90 độ

=>O,H,B,A cùng thuộc 1 đường tròn

2: Xét ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB/AE=BD/EB

=>AB*EB=AE*BD

a) Ta có ABAB và ACAC là tiếp tuyến tại AA và BB của (O)(O)

⇒AB⊥OB⇒AB⊥OB và AC⊥OCAC⊥OC

Xét AOB và ΔAOCAOB và ΔAOC có:

OB=OC(=R)OB=OC(=R)

ˆABO=ˆACO=90oABO^=ACO^=90o

OAOA chung

⇒ΔAOB=ΔAOC⇒ΔAOB=ΔAOC (ch-cgv)

⇒AB=AC⇒AB=AC và có thêm OB=OC⇒AOOB=OC⇒AO là đường trung trực của BCBC

Mà H là trung điểm của BC

⇒A,H,O⇒A,H,O thẳng hàng

Tứ giác ABOCABOC có ˆABO+ˆACO=90o+90o=180oABO^+ACO^=90o+90o=180o

⇒A,B,C,O⇒A,B,C,O cùng thuộc đường tròn đường kính OAOA.