K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2021

a) ^EAB là góc nội tiếp chắn nửa đường tròn nên ^EAB = 900 hay AE⊥AB

Có AE⊥AB (cmt) và CD⊥AB (gt) nên AE//CD => Cung AC bằng cung DE hay AC = DE (đpcm)

b) ∆AIC và ∆BID vuông tại I nên IA2 + IB2 + IC2 + ID2 = (IA2 + IC2) + (IB2 + ID2) = AC2 + BD2 = ED2 + BD2 = BE2 (∆EDB có ^EDB = 900 do nó là góc nội tiếp chắn nửa đường tròn)

Mà BE2 = (2R)2 = 4R2 nên IA2 + IB2 + IC2 + ID2 = 4R2 (đpcm)

30 tháng 1 2021

a) ^EAB là góc nội tiếp chắn nửa đường tròn nên ^EAB = 900 hay AE⊥AB

Có AE⊥AB (cmt) và CD⊥AB (gt) nên AE//CD => Cung AC bằng cung DE hay AC = DE (đpcm)

b) ∆AIC và ∆BID vuông tại I nên IA2 + IB2 + IC2 + ID2 = (IA2 + IC2) + (IB2 + ID2) = AC2 + BD2 = ED2 + BD2 = BE2 (∆EDB có ^EDB = 900 do nó là góc nội tiếp chắn nửa đường tròn)

Mà BE2 = (2R)2 = 4R2 nên IA2 + IB2 + IC2 + ID2 = 4R2 (đpcm)

 

6 tháng 1 2018

O A B C D E I

a) Xét \(\Delta\)BAE: Có đường trung tuyến AO (O thuộc BE) với AO=BO=EO=1/2BE

=> \(\Delta\)BAE vuông tại A hay EA vuông góc AB

Mà AB và CD vuông góc với nhau => AE//CD => Tứ giác AECD là hình thang (1)

Lại có: 4 điểm A;E;C;D cùng nằm trên (O;R) => ) thuộc trung trực của AE và CD (2)

Từ (1) VÀ (2) => Hình thang AECD có trục đối xứng => Tứ giác AECD là hình thang cân

=> AC=DE (2 đg chéo) (đpcm).

b) Do AB vuông góc CD tại I 

Ta có: \(IA^2+IC^2=AC^2\)(Định lí Pytagorean)

\(IB^2+ID^2=BD^2\)(Định lí Pytagorean)

\(\Rightarrow IA^2+IB^2+IC^2+ID^2=AC^2+BD^2\)

Vì \(AC=DE\)(cmt) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=DE^2+BD^2\)(3)

Chứng minh được \(\Delta\)BDE vuông tại D (Có trung truyến DO bằng 1/2 cạnh tương ứng BE)

\(\Rightarrow DE^2+BD^2=BE^2\)(4)

Thay (4) vào (3) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=BE^2\)(5)

R là bán kính của đường trond, BE là đường kính \(\Rightarrow BE^2=\left(2R\right)^2=4R^2\)(6)

Từ (5) và (6) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=4R^2\) (đpcm).

c) Mình chưa nghĩ ra ^^ 

22 tháng 9 2019

O A B C D E I

a) Ta thấy BE là đường kính của (O). Suy ra ^BAE chắn nửa đường tròn hay AB vuông góc AE

Do đó AE // CD. Mà AE,CD là hai dây của đường tròn (O) nên (AC = (DE tức AC = DE (đpcm).

b) Tương tự câu a, \(\Delta\)BED vuông tại D. Áp dụng ĐL Pytagoras ta có:

\(\left(IA^2+IC^2\right)+\left(IB^2+ID^2\right)=AC^2+BD^2=DE^2+BD^2=BE^2=4R^2\)(đpcm).

c) Áp dụng ĐL Pytagoras và hệ thức lượng trong đường tròn ta có:

\(AB^2+CD^2=\left(IA+IB\right)^2+\left(IC+ID\right)^2=\left(IA^2+IB^2+IC^2+ID^2\right)+2\left(IA.IB+IC.ID\right)\)

\(=4R^2+4\left(R^2-OI^2\right)=8R^2-4OI^2\)(đpcm).

a) Xét ΔDAB có

DO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AO)

DO là đường cao ứng với cạnh AB(gt)

Do đó: ΔDAB cân tại D(Định lí tam giác cân)

Suy ra: \(DA=DB\)(hai cạnh bên)

hay \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)

Xét (O) có 

\(\widehat{AID}\) là góc nội tiếp chắn cung AD

\(\widehat{BID}\) là góc nội tiếp chắn cung BD

mà \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)(cmt)

nên \(\widehat{AID}=\widehat{BID}\)

hay ID là tia phân giác của \(\widehat{AIB}\)(đpcm)

b) Xét (O) có 

\(\widehat{AIB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AIB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{FIB}=90^0\)

Xét tứ giác BIFO có 

\(\widehat{FOB}\) và \(\widehat{FIB}\) là hai góc đối

\(\widehat{FOB}+\widehat{FIB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BIFO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,I,F,O cùng thuộc 1 đường tròn(đpcm)

17 tháng 4 2020

a) Xét (O;R) có:

\(\widehat{BCD}\)là góc nt chắn cung BC

\(\widehat{BAC}\)là góc nt chắn cung BC

\(\Rightarrow\widehat{BCD}=\widehat{BAC}=sđ\widebat{BC}\)

Vì dây \(AB\perp CD\)tại M nên \(\widehat{M}=90^o\)

Xét \(\Delta ACM\)và \(\Delta DBM\):

\(\hept{\begin{cases}\widehat{AMC}=\widehat{DMB}=90^o\\\widehat{BAC}=\widehat{BCD}\end{cases}}\)

\(\Rightarrow\Delta ACM\infty\Delta DBM\left(gg\right)\)

\(\Rightarrow\frac{AM}{DM}=\frac{MC}{MB}\Rightarrow AM.MB=MC.DM\)

b) Vì \(\Delta ACM\infty DBM\Rightarrow\widehat{ACM}=\widehat{DBM}\)

Xét \(\left(O;R\right):\)

\(\Delta CDE\)nt (O), cạnh DE là đường kính\(\Rightarrow\Delta CDE\)vuông tại C\(\Rightarrow CD\perp CE\Rightarrow\widehat{DCE}=90^o\)

\(\Delta BDE\)nt \(\left(O\right),\)cạnh DE là đường kính\(\Rightarrow\Delta BDE\)vuông tại B\(\Rightarrow\widehat{DBE}=90^o\)

\(\widehat{MAC}+\widehat{ACM}=90^o\Rightarrow\widehat{MAC}=90^o-\widehat{ACM}\)

Và \(\widehat{ABE}+\widehat{DBM}=90^o\Rightarrow\widehat{ABE}=90^o-\widehat{DBM}\)

Mà \(\widehat{ACM}=\widehat{DBM}\)\(\Rightarrow\widehat{MAC}=\widehat{ABE}\)

Do \(AB\perp CD,CD\perp CE\Rightarrow AB//CE\)

Xét tg ABCE có:

\(AB//CE\)

\(\widehat{MAC}=\widehat{ABE}\)

\(\Rightarrow Tg\)ABCE là hthang cân

c) Áp dụng đ/lí Pi-ta-go lần lượt vào các \(\Delta AMC,\Delta BCM;\Delta BDM;\Delta ADM;\Delta BDE\)có:

\(AM^2=AC^2-CM^2\)(1)

\(MB^2=BC^2-CM^2\)(2)

\(MC^2=BC^2-BM^2\)(3)

\(MD^2=BD^2-BM^2\)(4)

\(DE^2=BD^2+BE^2\)(5)

Công từng vế của (1)(2)(3)(4) ta đc đẳng thức:

\(MA^2+MB^2+MC^2+MD^2=AC^2-CM^2+BC^2-CM^2+BC^2-BM^2+BD^2-BM^2\)

                                                              \(=AC^2+2BC^2-2CM^2-BM^2+BD^2-BM^2\)

                                                               \(=AC^2+2BM^2-BM^2+BD^2-BM^2\)(vì \(BM^2=BC^2-CM^2\))

                                                                \(=AC^2+BD^2\)

                                                                  \(=BE^2+BD^2\)(vì AC=BE do ABCE là hthang cân)

                                                                  \(=DE^2\)(c/m (5))

Mà DE là đường kính của (O) nên DE=2R\(\Rightarrow DE^2=\left(2R\right)^2=4R^2\)

Vậy \(MA^2+MB^2+MC^2+MD^2\)có g/trị ko đổi khi M thay đổi trong (O)

cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối địnhb. MA^2+MB^2+MC^2+MD^2=4R^2c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là...
Đọc tiếp

cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:

A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định

b. MA^2+MB^2+MC^2+MD^2=4R^2

c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau

2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD

a,CM: Sahkb=Sacb+Sadb

b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ

3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat

5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ

7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.

nhờ các bạn ssieeu toán giải hộ mình với! thanks  nhiều

0