K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022
a) Dễ thấy \(\widehat{AMC}=90^o\) Xét (O) có đường kính AB \(\Rightarrow\) \(\widehat{ANB}\) là góc nội tiếp chắn nửa đường tròn. \(\Rightarrow\widehat{ANB}=90^o\) hay \(\widehat{ANC}=90^o\) Tứ giác ANCM có \(\widehat{AMC}+\widehat{ANC}=90^o+90^o=180^o\) \(\Rightarrow\) Tứ giác ANCM nội tiếp \(\Rightarrow\) 4 điểm A, M, C, N cùng thuộc 1 đường tròn. b) Vì AB là đường kính của (O) \(\Rightarrow sđ\stackrel\frown{AB}=180^o\) Mà I là điểm chính giữa của cung AB \(\Rightarrow sđ\stackrel\frown{IA}=\dfrac{sđ\stackrel\frown{AB}}{2}=\dfrac{180^o}{2}=90^o\) Lại có \(\widehat{ANI}\) là góc nội tiếp chắn \(\stackrel\frown{IA}\) \(\Rightarrow\widehat{ANI}=\dfrac{1}{2}sđ\stackrel\frown{IA}=\dfrac{1}{2}.90^o=45^o\) hay \(\widehat{ANM}=45^o\) Mặt khác, tứ giác ANCM nội tiếp \(\Rightarrow\widehat{ANM}=\widehat{ACM}\) Mà \(\widehat{ANM}=45^o\Rightarrow\widehat{ACM}=45^o\) Lại có \(\Delta ACM\) vuông tại M \(\Rightarrow\Delta ACM\) vuông cân tại M \(\Rightarrow AM=CM\) c) Kẻ đường kính ID của (O)  Ta có \(MN=IN-IM\) Mà IN là dây cỏa (O) nên hiển nhiên \(IN\le ID\), nhưng do IN không đi qua O nên \(IN< ID\) (1) Dễ dàng chứng minh \(IO\perp AB\) tại O, do đó \(\Delta IOM\) vuông tại O \(\Rightarrow IM>IO\) (không xảy ra dấu "=" vì M không trùng với O) \(\Rightarrow-IM< -IO\) (2) Từ (1) và (2) \(\Rightarrow IN-IM< ID-IO\Leftrightarrow MN< OD=R\) Vậy ta có đpcm.  
29 tháng 5 2017

a) Nối O với N. Ta có \(\widehat{OAN}\)=\(\widehat{OBN}\)=\(\widehat{ONM}\)=90° →các góc này nội tiếp chắn nửa đường tròn đường kính ON →O,A,B,N,M cùng nằm trên đường tròn đường kính ON.

b) Nối A với M. Xét tứ giác nội tiếp OANB(chứng minhnội tiếp trước)ta có \(\widehat{AMO}\)=\(\frac{1}{2}\)\(\widebat{OA}\);\(\widehat{OAB}\)=\(\frac{1}{2}\)\(\widebat{OB}\) mà 

  • \(\widebat{OA}\)=\(\widebat{OB}\)\(\widehat{AMO}\)=.\(\widehat{OAB}\)=\(\widehat{OAI}\)Xét tam giác OAI và tam giác OMA: \(\widehat{O}\)chung ,\(\widehat{OAI}\)=\(\widehat{AMO}\)\(\Rightarrow\)hai tam giác đồng dạng (g.g) \(\Rightarrow\)\(\frac{OI}{OA}\)=\(\frac{OA}{OM}\)\(\Leftrightarrow\)OI.OM=\(^{OA^2}\)=R​bình.​
  • c)
31 tháng 3 2020

vgfykgkuy

31 tháng 3 2020

mk bt nhưng mk ko bt

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác ADMO có:}\)

∠DMO =90o (do M là tiếp tuyến của (O))

∠DAO =90o (do AD là tiếp tuyến của (O))

=> ∠DMO + ∠DAO = 180o

=> Tứ giác ADMO là tứ giác nội tiếp.

\(\text{b) Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM}\)

=>(AOD = \(\frac{1}{2}\)∠AOM

Mặt khác ta có (ABM là góc nội tiếp chắn cung AM

=> ∠ABM = \(\frac{1}{2}\)∠AOM

=> ∠AOD = ∠ABM

Mà 2 góc này ở vị trí đồng vị

=> OD // BM

Xét tam giác ABN có:

OM// BM; O là trung điểm của AB

=> D là trung điểm của AN

c) Ta có: ΔOBM cân tại O ;OE ⊥MB =>OE là đường trung trực của MB

=>EM = EB => ΔMEB cân tại E => ∠EMB = ∠MEB (1)

ΔOBM cân tại O => ∠OMB = ∠OBM (2)

Cộng (1) và (2) vế với vế, ta được:

∠EMB + ∠OMB = ∠MEB + ∠OBM ⇔ ∠EMO =∠EOB ⇔ ∠EOB =90o

=>OB ⊥ BE

Vậy BE là tiếp tuyến của (O).

d) Lấy điểm E trên tia OA sao cho OE = \(\frac{OA}{3}\)

Xét tam giác OAI có OI vừa là đường cao vừa là trung tuyến

=> Tam giác OAI cân tại I => IA = IB; ∠IBA = ∠IAB

Ta có:

\(\hept{\begin{cases}\widehat{IBA}=\widehat{IAB}\\\widehat{IBA}+\widehat{INA}=90^0\\\widehat{NAI}+\widehat{IAB}=\widehat{NAB}=90^0\end{cases}}\)

=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN

Tam giác NAB vuông tại A có: IA = IN = IB

=> IA là trung tuyến của tam giác NAB

Xét ΔBNA có:

IA và BD là trung tuyến; IA ∩ BD = {J}

=> J là trọng tâm của tam giác BNA

Xét tam giác AIO có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}=\frac{2}{3}\Rightarrow\text{JE}\text{//}OI\)

=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.

Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d

Do d// OI (cùng vuông góc AB) nên ta có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}\)

\(\text{MÀ}\frac{AE}{AO}=\frac{2}{3}\Rightarrow\frac{\text{AJ}}{AI}=\frac{2}{3}\)

AI là trung tuyến của tam giác NAB

=> J' là trọng tâm tam giác NAB

Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3.

HÌNH Ở TRONG THỐNG KÊ HỎI ĐÁP NHA

19 tháng 2 2022

loading...