Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính
\(\Rightarrow\widehat{AMB}=90^0\)
\(\Rightarrow AM\perp MB\)
Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình
\(\Rightarrow\Delta ANB\)cân tại B
\(\Rightarrow NB=BA\)
\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định
b) Vì BM là đường cao của tam giác ABN cân tại B
=> BM là phân giác góc ABN
=> góc ABM= góc NBM
Xét tam giác ARB và tam giác NRB có:
\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)
\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)
\(\Rightarrow RN\perp BN\)
\(\Rightarrow RN\)là tiếp tuyến của (C)
c) Ta có: A,P,B thuộc (O); AB là đường kính
\(\Rightarrow\widehat{APB}=90^0\)
\(\Rightarrow AP\perp BP\)
\(\Rightarrow RN//AP\)( cùng vuông góc với NB )
Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q
\(\Rightarrow Q\)là trực tâm tam giác NAB
\(\Rightarrow NQ\perp AB\)
=> NQ // AR( cùng vuông góc với AB)
Xét tứ giác ARNQ có:
\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành
Mà 2 đường chéo RQ và AN vuông góc với nhau
=> ARNQ là hình thoi
1) nối OM;ON .vì K là trung điểm của MN=>KN=KM=KC=1/2MN( TAM GIÁC VUÔNG ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN = NỬA CẠNH HUYỀN)
VÌ OM=ON( CÙNG =R) ==> tam giác OMN cân tại O . XÉT tam giác OMN cân tại O CÓ OK là đường trung tuyến nên nó đồng thời là đường cao ) ==> OK vuông góc với MN ==> TAM giác OKN vuông tại K
XÉT TAM GIÁC OKN vuông tại K .THEO PY-TA GO TA CÓ \(OK^2+KN^2=ON^2\)
MÀ KN=KC (chứng minh trên) ==>\(OK^2+KC^2=ON^2\)
MÀ ON ko đổi ( vì bằng bán kính đường tròn tâm O) ==> \(OK^2+KC^2\) ko đổi
Áp dụng công thức tính đường trung tuyến: KI=\(\sqrt{\frac{2\left(KC^2+KO^2\right)-CO^2}{4}}\)
THEO CÂU a: KC^2+KO^2=ON^2
=>KI=\(\sqrt{\frac{2\cdot ON^2-CO^2}{4}}=\sqrt{\frac{ON^2+\left(ON^2-CO^2\right)}{4}}=\sqrt{\frac{ON^2+CN^2}{4}}\)=\(\frac{\sqrt{R^2+OA^2-CO^2}}{2}=\sqrt{\frac{R^2+AC^2}{4}}\)
Vì C cố định nên khoảng cách KI là cố định
vậy khi M di động trên (O;R) thì K di động trên 1 đường tròn cố định tâm I là trung điểm của CO
Lời giải:
a)
Vì $AB,AC$ là tiếp tuyến của $(O)$ nên \(OB\perp AB, OC\perp AC\)
\(\Rightarrow \widehat{ABO}=\widehat{ACO}=90^0\)
Tứ giác $ABOC$ có tổng 2 góc đối \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\) nên $ABOC$ là tứ giác nội tiếp, hay $A,B,O,C$ đồng viên (1)
Mặt khác:
$I$ là trung điểm của dây cung $MN$ nên $OI\perp MN$
\(\Rightarrow \widehat{AIO}=90^0\)
Tứ giác $ABIO$ có \(\widehat{ABO}=\widehat{AIO}(=90^0)\) và cùng nhìn cạnh $AO$ nên $ABIO$ là tứ giác nội tiếp, hay $A,B,I,O$ đồng viên (2)
Từ (1); (2) suy ra $A,B,I,O,C$ đồng viên (hay cùng thuộc 1 đường tròn)
b)
Áp dụng định lý Pitago cho tam giác $ABO$ vuông tại $B$:
\(AB=\sqrt{AO^2-BO^2}=\sqrt{(3R)^2-R^2}=2\sqrt{2}R\)
Xét tam giác $ABM$ và $ANB$ có:
\(\widehat{A}\) chung
\(\widehat{ABM}=\widehat{ANB}\) (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó, trong TH này chính là tiếp tuyến $BA$ và dây cung $BM$)
\(\Rightarrow \triangle ABM\sim \triangle ANB(g.g)\Rightarrow \frac{AB}{AN}=\frac{AM}{AB}\)
\(\Leftrightarrow AM.AN=AB^2=8R^2\)
\(\Leftrightarrow AM(AM+MN)=8R^2\Leftrightarrow AM(AM+R)=8R^2\)
\(\Rightarrow AM=\frac{-1+\sqrt{33}}{2}R\)
\(AN=AM+MN=\frac{1+\sqrt{33}}{2}R\)
c)
\(OB=OC=R\)
\(AB=AC\) (tính chất 2 tiếp tuyến cắt nhau)
\(\Rightarrow OA\) là trung trực của $BC$
\(\Rightarrow OA\perp BC\) tại $H$ \(\Rightarrow \widehat{AHK}=90^0\)
Tứ giác $AKIH$ có \(\widehat{AIK}=\widehat{AHK}=90^0\) và cùng nhìn cạnh $AK$ nên $AKIH$ là tứ giác nội tiếp
\(\Rightarrow OI.OK=OH.OA\)
d)
Xét tam giác vuông $ABO$ vuông tại $B$ có đường cao $BH$, áp dụng công thức hệ thức lượng ta có \(OH.OA=OB^2=R^2=OM^2\)
Mà \(OI.OK=OH.OA\) (cmt)
\(\Rightarrow OI.OK=OM^2\) \(\Rightarrow \frac{OI}{OM}=\frac{OM}{OK}\)
Xét tam giác $OMI$ và $OKM$ có:
\(\widehat{O}\) chung
\(\frac{OI}{OM}=\frac{OM}{OK}\)
\(\Rightarrow \triangle OMI\sim \triangle OKM(c.g.c)\Rightarrow \widehat{OMI}=\widehat{OKM}\)
\(\Leftrightarrow \widehat{OMI}=90^0-\widehat{KMI}\Leftrightarrow \widehat{OMI}+\widehat{KMI}=90^0\)
\(\Leftrightarrow \widehat{KMO}=90^0\Rightarrow KM\perp OM\). Do đó $KM$ là tiếp tuyến của $(O)$. Hoàn toàn tương tự với $KN$ ta có đpcm.
- LUYỆN TẬP
- HỎI ĐÁP
- KIỂM TRA
⋯
MUA THẺ HỌC
- 1
- ๖ۣۜƝƘ☆๖ۣۜҪôηɠ•Ҫɦúลツ2k8 ⁀ᶦᵈᵒᶫ - ๖ۣۜTεαм ๖ۣۜFσɾεʋεɾ ๖ۣۜAℓσηε♡
☆》Hãčķěř《☆ _❷ⓚ❷ _ Ϯëą๓ _ Trà _ Sữa
Kết bạn
- Hoạt động
- Bạn bè
- Tủ sách
☆》Hãčķěř《☆ _❷ⓚ❷ _ Ϯëą๓ _ Trà _ Sữa
Ai cũng hạnh phúc trừ tôi!...// Để ☆》Hãčķěř《☆ kể cho mà nghe: Câu truyện xảy ra từ tuần trước của tuần trước của tuần trước của tuần trước vào thứ vui ngày buồn tháng nhớ năm thương, sự việc xảy ra vào lúc 19.30, tại thư viện, lúc đó ☆》Hãčķěř《☆ đang đọc sách thì bỗng dưng có 1 đứa con gái đi đến, nó hỏi: Đứa con gái: Cậu ơi!. ☆》Hãčķěř《☆: Ơi. Đứa con gái: Cậu biết dùng google không. ☆》Hãčķěř《☆: Google á, ai chả biết dùng google. Đứa con gái: Thế chỉ cho tớ cách với, tớ tìm mãi tìm mãi mà cũng không tìm được cách để vào được trái tim cậu. Theo như trên mạng thì 2 bọn họ phải cười với nhau nhưng đây thì... ☆》Hãčķěř《☆: Dẹp Dẹp Dẹp! Cút!. Đứa con gái: Ơ, sao cậu phũ thế!. ☆》Hãčķěř《☆: BINH BINH BỐP BỐP!( Vâng và cuối cùng mọi người tự hiểu ạ !). Mọi người ai thích trà sữa thì vào team mình nha! O w O // Gương kia ngự ở trên tường…bao giờ ta gặp được người yêu ta… gương cười gương bảo lại rằng : “Mặt mày mà có người yêu tao quỳ”.Chán thả thính rồi, giờ ai cưa tự đổ!
- Tên: ☆》Hãčķěř《☆ _❷ⓚ❷ _ Ϯëą๓ _ Trà _ Sữa
- Đang học tại:
- Địa chỉ: -
- Điểm hỏi đáp: 0SP, 0GP
- Điểm hỏi đáp tuần này: 0SP, 0GP
- Thống kê hỏi đáp
Luyện toán
0 -Trung bình 6.00 - Tổng điểm 60
Luyện văn - Tiếng Việt
0 -Trung bình 0.00 - Tổng điểm
Luyện Tiếng Anh
0 -Trung bình 0.00 - Tổng điểm
Ai trả lời đúng từ câu a- câu c có cả hìnhlà một chiếc thẻ cào 50k (tuỳ mọi loại thẻ bạn muốn chọn) và để địa chỉ email phía bên dưới câu trả lời. ♡♡♡
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [A, A'] Đoạn thẳng l: Đoạn thẳng [B, B'] Đoạn thẳng m: Đoạn thẳng [A', B'] Đoạn thẳng n: Đoạn thẳng [M, B] Đoạn thẳng p: Đoạn thẳng [A, N] Đoạn thẳng s: Đoạn thẳng [A, K'] Đoạn thẳng t: Đoạn thẳng [B, K'] Đoạn thẳng a: Đoạn thẳng [O, J] Đoạn thẳng b: Đoạn thẳng [N, O] Đoạn thẳng d: Đoạn thẳng [M, O] Đoạn thẳng e: Đoạn thẳng [K', I] Đoạn thẳng g_1: Đoạn thẳng [H, I] O = (1.44, 3.08) O = (1.44, 3.08) O = (1.44, 3.08) B = (4.86, 3.08) B = (4.86, 3.08) B = (4.86, 3.08) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm N: Điểm trên c Điểm N: Điểm trên c Điểm N: Điểm trên c Điểm M: Điểm trên c Điểm M: Điểm trên c Điểm M: Điểm trên c Điểm A': Giao điểm đường của h, i Điểm A': Giao điểm đường của h, i Điểm A': Giao điểm đường của h, i Điểm B': Giao điểm đường của h, j Điểm B': Giao điểm đường của h, j Điểm B': Giao điểm đường của h, j Điểm I: Giao điểm đường của n, p Điểm I: Giao điểm đường của n, p Điểm I: Giao điểm đường của n, p Điểm J: Trung điểm của M, N Điểm J: Trung điểm của M, N Điểm J: Trung điểm của M, N Điểm K': Giao điểm đường của q, r Điểm K': Giao điểm đường của q, r Điểm K': Giao điểm đường của q, r Điểm H: Giao điểm đường của f_1, g Điểm H: Giao điểm đường của f_1, g Điểm H: Giao điểm đường của f_1, g
a) Gọi J là trung điểm A'B'. Ta thấy ngay OJ là đường trung bình hình thang AA'B'B.
Từ đó suy ra \(OJ=\frac{AA'+BB'}{2}=\frac{R\sqrt{3}}{2}\)
Lại do OJ // AA' // BB' nên \(OJ⊥A'B'\).
Xét tam giác vuông MOI, có \(MO=R;OJ=\frac{R\sqrt{3}}{2}\Rightarrow MJ=\sqrt{R^2-\frac{3R}{4}}=\frac{R}{2}\) (Định lý Pitago)
Tương tự \(JN=\frac{R}{2}\Rightarrow MN=R.\)
b) Dễ thấy \(\widehat{IMK}=\widehat{INK}=90^o\Rightarrow\) tứ giác MINK nội tiếp đường tròn đường kính IK.
Xét tam giác MON có MO = ON = MN = R nên tam giác đó đều, vậy \(\widehat{MON}=60^o\Rightarrow\widehat{MBN}=30^o\)
(Góc nội tiếp và góc ở tâm cùng chắn một cung)
Do MINK và AMNB nội tiếp nên \(\widehat{MKI}=\widehat{MNI}=\widehat{MBA}\)
Vậy \(\Delta MIK\sim\Delta MAB\left(g-g\right)\Rightarrow\frac{IK}{AB}=\frac{MK}{MB}=tan\widehat{MBK}=tan30^o=\frac{\sqrt{3}}{3}\)
Suy ra \(IK=\frac{\sqrt{3}}{3}.2R=\frac{2R\sqrt{3}}{3}\)
Vậy thì bán kính đường tròn nội tiếp MINK là \(\frac{R\sqrt{3}}{3}.\)
c) Gọi H là chân đường vuông góc hạ từ K xuống AB. Ta thấy ngay KH là đường cao tam giác AKB.
Diện tích tam giác AKB lớn nhất khi KH lớn nhất hay IH lớn nhất.
IH lớn nhất khi tam giác KAB cân tại K. Lại có \(\widehat{AKB}=60^o\) nên KAB là tam giác đều. Khi đó MN là đường trung bình tam giác KAB nên có tính chất là song song và bằng một nửa AB.
\(S_{KAB}=\frac{1}{2}.AB.OK=\frac{1}{2}.2R.R\sqrt{3}=\sqrt{3}R^2\)
neu mnik bang mn thi chung ta se phai lay aq1p +aqwp roi nhan ra lay ket qua chia cho S tim dc la ok