Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có BCBC là đường kính của (O)→AB⊥AC(O)→AB⊥AC
Mà HM⊥BCHM⊥BC
→ˆHAC=ˆHMC=90o→HAC^=HMC^=90o
→HACM→HACM nội tiếp đường tròn đường kính CHCH
b.Ta có AHMCAHMC nội tiếp
→ˆHAM=ˆHCM=ˆDCB=ˆDAB→HAM^=HCM^=DCB^=DAB^
→AB→AB là phân giác ˆDAMDAM^
c.Vì BCBC là đường kính của (O)→CD⊥BD→CD⊥BI(O)→CD⊥BD→CD⊥BI
Xét ΔIBCΔIBC có IM⊥BC,CD⊥BIIM⊥BC,CD⊥BI
Mà IM∩CD=H→HIM∩CD=H→H là trực tâm ΔIBC→BH⊥IC→BA⊥ICΔIBC→BH⊥IC→BA⊥IC
Mà AB⊥AC→I,A,CAB⊥AC→I,A,C thẳng hàng
Xét ΔBDH,ΔBAIΔBDH,ΔBAI có:
Chung ^BB^
ˆBDH=ˆBAI=90oBDH^=BAI^=90o
→ΔBDH∼ΔBAI(g.g)→ΔBDH∼ΔBAI(g.g)
→BDBA=BHBI→BDBA=BHBI
→BD.BI=BH.BA
a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)
chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)
b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)
ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)
=> góc ECA + góc HIB = 90o (1)
Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)
Từ (1) và (2) => góc ECA = góc EKI
=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)
c,Ta có: góc EAB + góc EBA = 90o và từ (3), (4) => góc EAB = góc BIH
mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)
=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)
Tương tự, ta có góc K + góc KAH = 90o
góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t) => góc KEN = góc K => tam giác KNE cân tại N => NK = NE (**)
từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)
1: góc EAO+góc EDO=180 độ
=>EAOD nội tiếp
2: Xét (O) có
EA,ED là tiếp tuyến
=>EA=ED
mà OA=OD
nên OE là trung trực của AD
=>OE vuông góc AD tại H
góc AKB=1/2*sđ cug AB=90 độ
=>AK vuông góc EB
ΔEAB vuông tại E có AK vuông góc EB
nên EK*EB=EA^2=EH*EO
=>EK/EO=EH/EB
=>ΔEKH đồng dạng với ΔEOB
=>góc EHK=góc EBO=góc KBA
O A B x C E D M
a, xét tg AEO và CEO có : EO chung
^AEO = ^CEO = 90
OA = OC = r
=> Tg AEO = tg CEO (ch-cgv)
=> ^AOE = ^COE
xét tg MAO và tg MCO có : Mo chung
OA = OC = r
=> tg MAO = tg MCO (cg-c)
=> ^MAO = ^MCO
mà ^MAO = 90
=> ^MCO = 90 => OC _|_ MC
có C thuộc 1/2(o)
=> MC là tt của 1/2(o)
b, xét tứ giác MCOA có : ^MCO = ^MAO = 90
=> ^MCO + ^MAO = 180
=>MCOA nội tiếp
+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM
có MEA = 90 do AC _|_ MO (Gt)
=> ^ADM = ^MEA = 90
=> MDEA nt
Hình tự vẽ nha
1, Ta có: MA = MC (t/c 2 tt cắt nhau)
OA = OC (t/c 2 tt cắt nhau)
=> OM là đường trung trực của AC
=> OM _|_ AC hay \(\widehat{OEC}=90^o\)
Có: \(\widehat{OBD}=90^o\) (t/c tt của đường tròn)
XÉt tứ giác OBDE có: \(\widehat{OEC}+\widehat{OBD}=90^o+90^o=180^o\)
Mà 2 góc này ở vị trí đối diện
=> tứ giác OBDE nội tiếp (đpcm)
2, Xét t/g ABC có: góc ACB là góc nội tiếp chắn nửa đường tròn
=> \(\widehat{ACB}=90^o\) hay BC _|_ AD
Áp dụng hệ thức b2=a.b' vào t/g ABD vuông tại B, đường cao BC có: \(AC.AD=AB^2=\left(2R\right)^2=4R^2\) (vì AB là đường kính) (đpcm)
3, Gọi K là trung điểm của MF (K thuộc MF) => KM=KF
Ta có: AM _|_ AB (t/c tt) ; BF _|_ AB (t/c tt) (1)
=> AM // BF => tứ giác AMBF là hình thang
Xét hình thang AMBF có: KM = KF ; OA = OB (gt)
=> OK là đường trung bình của hình thang AMBF
=> OK // AM // BF mà AM _|_ AB (cmt)
=> OK _|_ AB (1)
Lại có: t/g MOF nội tiếp đường tròn => O thuộc tròn ngoại tiếp t/g MOF (2)
Từ (1) và (2) => đpcm
Mình đính chính, viết nhầm f(x) = g(x) + 3 lại viết nhầm thành f(x) = g(x) = 3. xin chữa lại, Xin lỗi các bạn
.